This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance while minimizing redundancy. This optimization process improves the performance of the classification model in general. In case of classification, the Support Vector Machine (SVM) and Neural Network (NN) hybrid model is presented. This combines an SVM classifier's capacity to manage functions in high dimensional space, as well as a neural network capacity to learn non-linearly with its feature (pattern learning). The model was trained and tested on an EEG dataset and performed a classification accuracy of 97%, indicating the robustness and efficacy of our method. The results indicate that this improved classifier is able to be used in brain–computer interface systems and neurologic evaluations. The combination of machine learning and optimization techniques has established this paradigm as a highly effective way to pursue further research in EEG signal processing for brain language recognition.
Some new norms need to be adapted due to COVID-19 pandemic period where people need to wear masks, wash their hands frequently, maintain social distancing, and avoid going out unless necessary. Therefore, educational institutions were closed to minimize the spread of COVID-19. As a result of this, online education was adapted to substitute face-to-face learning. Therefore, this study aimed to assess the Malaysian university students’ adaptation to the new norms, knowledge and practices toward COVID-19, besides, their attitudes toward online learning. A convenient sampling technique was used to recruit 500 Malaysian university students from January to February 2021 through social media. For data collection, all students
... Show MoreIn order to advance the education process and raise the educational level of the players, it became necessary to introduce new educational aids, programmed education in the education process, through which the basic skills to be learned are explained and clarified, and immediate feedback is provided that would enhance the information of the learner, and Reaching the goal to be achieved, taking into account the individual differences between the players, and thus it is possible to move away from the educational methods used in learning skills, which requires great effort and time, in addition to that the open playground may not perform the skill accurately and the player looks from one side, while when using the computer you look from severa
... Show MoreAbsence or hypoplasia of the internal carotid artery (ICA) is a rare congenital anomaly that is mostly unilateral and highly associated with other intracranial vascular anomalies, of which saccular aneurysm is the most common. Blood flow to the circulation of the affected side is maintained by collateral pathways, some of which include the anterior communicating artery (Acom) as part of their anatomy. Therefore, temporary clipping during microsurgery on Acom aneurysms in patients with unilateral ICA anomalies could jeopardize these collaterals and place the patient at risk of ischemic damage. In this paper, we review the literature on cases with a unilaterally absent ICA associa
Reverse Osmosis (RO) has already proved its worth as an efficient treatment method in chemical and environmental engineering applications. Various successful RO attempts for the rejection of organic and highly toxic pollutants from wastewater can be found in the literature over the last decade. Dimethylphenol is classified as a high-toxic organic compound found ubiquitously in wastewater. It poses a real threat to humans and the environment even at low concentration. In this paper, a model based framework was developed for the simulation and optimisation of RO process for the removal of dimethylphenol from wastewater. We incorporated our earlier developed and validated process model into the Species Conserving Genetic Algorithm (SCG
... Show MoreA nano manganese dioxide (MnO2) was electrodeposited galvanostatically onto a carbon fiber (CF) surface using the simple method of anodic electrodeposition. The composite electrode was characterized by field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). Very few studies investigated the efficiency of this electrode for heavy metals removal, especially chromium. The electrosorption properties of the nano MnO2/CF electrode were examined by removing Cr(VI) ions from aqueous solutions. NaCl concentration, pH, and cell voltage were studied and optimized using the Box-Behnken design (BDD) to investigate their effects and interactions on the electrosorption process. The results showed that the
... Show MoreA new (Reversed Phase- High Performance Liquid chromatography) RP-HPLC method with Ultraviolet-Visible spectrophotometry has been optimized and validated for the simultaneous extraction and determination of antioxidants present in Iraqi calyces of Hibiscus Sabdraffia Linn. The method is based on using ultrasonic bath for extracting antioxidants. Limit of detection in μg/ml of Vitamin C, Sabdaretine, Gossypetine, Hibiscetine, Anthocyanins, Dephinidin-3-glucoside were113.8294×10-6,123.0453×10-6,70.3681×10-6,59.6730×10-6,148.1710×10-6,and125.3481×10-6 respectively. The concentration of antioxidants found in dry spacemen of calyces of Iraqi Hibiscus Sabdraffia Linn. under study: Vitamin C, Sabdaretine, Gossypetine, Hibiscetine, Anthoc
... Show MoreAfter the information revolution that occurred in the Western world, and the developments in all fields, especially in the field of education and e-learning, from an integrated system based on the effective employment of information and communication technology in the teaching and learning processes through an environment rich in computer and Internet applications, the community and the learner were able to access information sources and learning at any time and place, in a way that achieves mutual interaction between the elements of the system and the surrounding environment. After the occurrence of the phenomenon of Covid 19, it led to a major interruption in all educational systems that had never happened before, and the disrupt
... Show MoreThis research aims at building a proposed training program according to the self-regulated strategies for the mathematics teachers and to identify the effect of this program on relational Mathematics of teachers. The sample of the research was (60) Math teachers; (30) teachers as experimental group and (30) teachers as control group. The results of the current research reacheded that the proposed training program according to some self-managed learning strategies, meets the needs of trainees with remarkable effectiveness to improve the level of their teaching performance to achieve the desired goals. Training teacher according to self-managed learning strategies is effective in bringing about the transition of training to their students
... Show MoreThis paper investigates the performance evaluation of two state feedback controllers, Pole Placement (PP) and Linear Quadratic Regulator (LQR). The two controllers are designed for a Mass-Spring-Damper (MSD) system found in numerous applications to stabilize the MSD system performance and minimize the position tracking error of the system output. The state space model of the MSD system is first developed. Then, two meta-heuristic optimizations, Simulated Annealing (SA) optimization and Ant Colony (AC) optimization are utilized to optimize feedback gains matrix K of the PP and the weighting matrices Q and R of the LQR to make the MSD system reach stabilization and reduce the oscillation of the response. The Matlab softwar
... Show MoreThe logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables. The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.
... Show More