Preferred Language
Articles
/
FhhIEJUBVTCNdQwCzyWr
Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm
...Show More Authors

This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance while minimizing redundancy. This optimization process improves the performance of the classification model in general. In case of classification, the Support Vector Machine (SVM) and Neural Network (NN) hybrid model is presented. This combines an SVM classifier's capacity to manage functions in high dimensional space, as well as a neural network capacity to learn non-linearly with its feature (pattern learning). The model was trained and tested on an EEG dataset and performed a classification accuracy of 97%, indicating the robustness and efficacy of our method. The results indicate that this improved classifier is able to be used in brain–computer interface systems and neurologic evaluations. The combination of machine learning and optimization techniques has established this paradigm as a highly effective way to pursue further research in EEG signal processing for brain language recognition.

Scopus Crossref
View Publication
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed May 01 2013
Journal Name
2013 Fourth International Conference On E-learning "best Practices In Management, Design And Development Of E-courses: Standards Of Excellence And Creativity"
Students' Perspectives in Adopting Mobile Learning at University of Bahrain
...Show More Authors

View Publication
Scopus (10)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Tue Apr 30 2024
Journal Name
International Journal On Technical And Physical Problems Of Engineering
Deep Learning Techniques For Skull Stripping of Brain MR Images
...Show More Authors

Deep Learning Techniques For Skull Stripping of Brain MR Images

Scopus (1)
Scopus
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Comparative analysis of deep learning techniques for lung cancer identification
...Show More Authors

One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Apr 14 2023
Journal Name
Journal Of Big Data
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
...Show More Authors
Abstract<p>Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for</p> ... Show More
View Publication Preview PDF
Scopus (460)
Crossref (455)
Scopus Clarivate Crossref
Publication Date
Tue Jan 07 2020
Journal Name
Xi,an University Of Architecture &technology
The Effect of Jigsaw strategy on Academic Achievement and Engagement in Learning among the 3rd male graders students in Chemistry
...Show More Authors

The research aims to identify the effect of jigsaw strategy in learning achievement and engaging for the third grade intermediate students in chemistry. The research sample consisted of (61) students distributed in two experimental and control groups. The research tools consisted in the achievement test and the measure of engaging learning. The results showed that there are statistically significant differences at the level of (α = 0.05) between the experimental group and the control group in both the achievement test and the measure of learning involvement for the benefit of the experimental group. In this light, the researcher recommended the use of jigsaw strategy for teaching the subject matter. Lamia because of its impact in raising

... Show More
Publication Date
Fri Oct 04 2024
Journal Name
Analytical And Bioanalytical Chemistry Research
Optimization and Validation of a GC-FID/QuEChERS Method for Quantitative Determination of Spiromesifen Residues in Tomato Fruits, Leaves and Soil Matrices
...Show More Authors

Pesticides serve a crucial function in contemporary farming practices, safeguarding agricultural crops against pest infestations and boosting production outputs. However, indiscriminate use has caused environmental and human health damage. This study aimed to develop and validate a gas chromatography-flame ionization detection (GC-FID) methodology for the direct and routine analysis of spiromesifen residues in soil, leaves, and tomato fruits. The proposed method prioritizes simplicity by avoiding derivatization steps, offering advantages over existing approaches that utilize lengthy multi-step extraction or derivatization prior to GC analysis. A key novelty of this work is the development of a QuEChERS extraction coupled directly to GC-FID

... Show More
Scopus
Publication Date
Sun Sep 07 2008
Journal Name
Baghdad Science Journal
The Extent of Homogeneity in the Distribution of Petrophysical Properties that Affecting the Primary and Enhanced Oil Recoveries of Reservoir Rocks in Zubair Formation of South Iraq
...Show More Authors

Records of two regionalized variables were processed for each of porosity and permeability of reservoir rocks in Zubair Formation (Zb-109) south Iraq as an indication of the most important reservoir property which is the homogeneity,considering their important results in criterion most needed for primary and enhanced oil reservoirs.The results of dispersion treatment,the statistical incorporeal indications,boxes plots,rhombus style and tangents angles of intersected circles indicated by confidence interval of porosity and permeability data, have shown that the reservoir rocks of Zubair units (LS),(1L) and (DJ) have reservoir properties of high quality,in contrast to that of Zubair units (MS) and (AB)which have reservoir properties of less q

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 06 2022
Journal Name
Iraqi National Journal Of Nursing Specialties
Evaluation of Blended Learning in Nursing Education at the Middle Region in Iraq
...Show More Authors

Abstract

Objective(s): To evaluate blended learning in nursing education at the Middle Region in Iraq.

Methodology: A descriptive study, using evaluation approach, is conducted to evaluate blended learning in nursing education in Middle Region in Iraq from September 26th, 2021 to March 22nd, 2022. The study is carried out at two Colleges of Nursing at the University of Baghdad and University of Tikrit in Iraq. A convenient, non-probability, sample of (60) undergraduate nursing students is selected. The sample is comprised of (30) student from each college of nursing, Self-report questionnaire is constructed from the literature, for e

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 02 2025
Journal Name
Journal Of Administration And Economics
Bayesian Method in Classification Regression Tree to estimate nonparametric additive model compared with Logistic Model with Application
...Show More Authors

The use of Bayesian approach has the promise of features indicative of regression analysis model classification tree to take advantage of the above information by, and ensemble trees for explanatory variables are all together and at every stage on the other. In addition to obtaining the subsequent information at each node in the construction of these classification tree. Although bayesian estimates is generally accurate, but it seems that the logistic model is still a good competitor in the field of binary responses through its flexibility and mathematical representation. So is the use of three research methods data processing is carried out, namely: logistic model, and model classification regression tree, and bayesian regression tree mode

... Show More
View Publication Preview PDF