Preferred Language
Articles
/
FhhIEJUBVTCNdQwCzyWr
Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm
...Show More Authors

This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance while minimizing redundancy. This optimization process improves the performance of the classification model in general. In case of classification, the Support Vector Machine (SVM) and Neural Network (NN) hybrid model is presented. This combines an SVM classifier's capacity to manage functions in high dimensional space, as well as a neural network capacity to learn non-linearly with its feature (pattern learning). The model was trained and tested on an EEG dataset and performed a classification accuracy of 97%, indicating the robustness and efficacy of our method. The results indicate that this improved classifier is able to be used in brain–computer interface systems and neurologic evaluations. The combination of machine learning and optimization techniques has established this paradigm as a highly effective way to pursue further research in EEG signal processing for brain language recognition.

Scopus Crossref
View Publication
Publication Date
Tue Jan 30 2024
Journal Name
International Journal Of Engineering Pedagogy (ijep)
E-learning in the Cloud Computing Environment: Features, Architecture, Challenges and Solutions
...Show More Authors

The need to constantly and consistently improve the quality and quantity of the educational system is essential. E-learning has emerged from the rapid cycle of change and the expansion of new technologies. Advances in information technology have increased network bandwidth, data access speed, and reduced data storage costs. In recent years, the implementation of cloud computing in educational settings has garnered the interest of major companies, leading to substantial investments in this area. Cloud computing improves engineering education by providing an environment that can be accessed from anywhere and allowing access to educational resources on demand. Cloud computing is a term used to describe the provision of hosting services

... Show More
View Publication
Scopus (5)
Scopus Clarivate Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Journal Of The College Of Education For Women
New Trends in Teaching and Learning Theory Dr. Jasim Muhammad Abdul- Slamy
...Show More Authors

New trends in teaching and learning theory are considered a theoretical axis
from which came the background that depends on any source, or practice sample or
teaching plane, accuracy and simplicity prevent the development of the teaching
process. Many attempts have come to scene to illuminate the teaching background,
but they have not exceed those remarkable patterns and methods. Thus, the
appearance of the teaching theory have been hindered.
This led to the need for research and development in the field of teaching to
find out a specific teaching theory according to the modern trends and concepts.
Teaching is regarded a humanitarian process which aims at helping those who
want to acquire knowledge, since teach

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
A survey of deepfakes in terms of deep learning and multimedia forensics
...Show More Authors

Artificial intelligence techniques are reaching us in several forms, some of which are useful but can be exploited in a way that harms us. One of these forms is called deepfakes. Deepfakes is used to completely modify video (or image) content to display something that was not in it originally. The danger of deepfake technology impact on society through the loss of confidence in everything is published. Therefore, in this paper, we focus on deepfakedetection technology from the view of two concepts which are deep learning and forensic tools. The purpose of this survey is to give the reader a deeper overview of i) the environment of deepfake creation and detection, ii) how deep learning and forensic tools contributed to the detection

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
The Philosophy of Organizational Forgetting In Frame of Learning and Organizational knowledge
...Show More Authors

current research aims to build an intellectual framework for concept of organizational forgetting, which is considered one of the most important topics in contemporary management thought, which is gain the consideration of most scholars and researchers in field of organizational behavior, which is to be a loss of intentional or unintentional knowledge of any organizational level. It turned out that just as organizations should learn and acquire knowledge, they must also forget, especially knowledge obsolete and worn out. And represented the research problem in the absence of Arab research dealing with organizational forgetting, and highlights the supporting infrastructure core, and show a close relationship with organizational le

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 18 2020
Journal Name
International Journal Of Research In Social Sciences And Humanities
THE EFFECT OF USING THE SCHOOL THEATER ON LEARNING SOME SKILLS OF THE GROUND MOVEMENT MAT GYMNASTIC ART FIFTH GRADE PRIMARY
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Sat Nov 10 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Assessment of Clinical Learning and Training Environment for Maternal and Child Health Nursing Students
...Show More Authors

Objective: To assess the clinical learning environment and clinical training for students' in maternal and child
health nursing.
Methodology: A descriptive study was conducted on non probability sample (purposive) of (175) students' in
Nursing College/ University of Baghdad for the period of June 19th to July 18th 2013. A questionnaire was used as a
tool of data collection to fulfill with objective of the study and consisted of three parts, including demographic,
clinical learning environment and clinical training for students' in maternal and child health nursing. Descriptive
statistical analyses were used to analyze the data.
Results: The results of the study revealed that the 65.1% of student at age which ranged b

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 26 2017
Journal Name
International Journal Of Pure And Applied Mathematics
ON CONVEX FUNCTIONS, $E$-CONVEX FUNCTIONS AND THEIR GENERALIZATIONS: APPLICATIONS TO NON-LINEAR OPTIMIZATION PROBLEMS
...Show More Authors

Contents IJPAM: Volume 116, No. 3 (2017)

View Publication
Publication Date
Wed Dec 23 2020
Journal Name
Iraqi Journal For Electrical And Electronic Engineering
Heuristic and Meta-Heuristic Optimization Models for Task Scheduling in Cloud-Fog Systems: A Review
...Show More Authors

Nowadays, cloud computing has attracted the attention of large companies due to its high potential, flexibility, and profitability in providing multi-sources of hardware and software to serve the connected users. Given the scale of modern data centers and the dynamic nature of their resource provisioning, we need effective scheduling techniques to manage these resources while satisfying both the cloud providers and cloud users goals. Task scheduling in cloud computing is considered as NP-hard problem which cannot be easily solved by classical optimization methods. Thus, both heuristic and meta-heuristic techniques have been utilized to provide optimal or near-optimal solutions within an acceptable time frame for such problems. In th

... Show More
View Publication
Crossref (11)
Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Study the Optimization of Petroleum Refinery Wastewater Treatment by Successive Electrocoagulation and Electro-oxidation Systems
...Show More Authors

In this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current density (C

... Show More
View Publication Preview PDF
Crossref (19)
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of classical method and optimization methods for estimating parameters in nonlinear ordinary differential equation
...Show More Authors

 ABSTRICT:

  This study is concerned with the estimation of constant  and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es

... Show More
View Publication Preview PDF
Crossref