The rapid rise in the use of artificially generated faces has significantly increased the risk of identity theft in biometric authentication systems. Modern facial recognition technologies are now vulnerable to sophisticated attacks using printed images, replayed videos, and highly realistic 3D masks. This creates an urgent need for advanced, reliable, and mobile-compatible fake face detection systems. Research indicates that while deep learning models have demonstrated strong performance in detecting artificially generated faces, deploying these models on consumer mobile devices remains challenging due to limitations in computing power, memory, privacy, and processing speed. This paper highlights several key challenges: (1) optimiz
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreThe proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MoreAnalyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col
... Show MoreObjective(s): The aim of this study is to determine the effectiveness of education program on Health Care Workers’ practices toward Primary Health Care Centers waste management and to identify the relationship between these practices and the demographic characteristics of the health workers. Methodology: A quasi- experimental design (pre-post tests) has been used in the present study for the period of November 16th 2014 to June 22nd 2015 .The allocated sample in the present study is consisted of (60) health care worker. The sample was randomly divided into two groups of (30) health care workers each. The stu
Objective(s): 1- Assess the effectiveness of health educational program on nurses' knowledge toward Hemodialysis at Pediatric Teaching Hospitals.
2-To find out the relationship between nurses' knowledge about hemodialysis and their demographic Characteristics.
Methods: The study was designed in a pre-experimental pattern for the nurses' working in the Child Welfare Teaching Hospital and the Child's Central Teaching Hospital, and a targeted sample consisting of (30) nurses was selected. It is tested in three periods of pre-test, the first post-test, and the second post-test. Participants were tested before implementing the tutorial (tutorial lectures
... Show MoreThe literature shows conflicting outcomes, making it difficult to determine how e-learning affects the performance of students in higher education. The effect of e-learning was studied and data has been gathered with the utilization of a variety of qualitative and quantitative methods, especially in relation to students' academic achievements and perceptions in higher education, according to literature review that has been drawn from articles published in the past two decades (2000-2020). The development of a sense of community in the on-line environment has been identified to be one of the main difficulties in e-learning education across this whole review. In order to create an efficient online learning community, it could be claim
... Show MoreObjectives: the study aims to findout the effectiveness of educational program concerning infection control guideline on nurses, and to find out the relationship between effectiveness of program and types of hospital unit, age, level of education, and years of experience of nurses. Methodology: A quasi-experimental design study was carried out in Baghdad teaching hospital in the wards, for the period of December, 20th 2013 to September, 30th of July 2014, The study samples is composed of (60) nurses who have been actually working in the medical ward, blood disease, psychiatric ward, and neurological war
FR Almoswai, BN Rashid, PEOPLE: International Journal of Social Sciences, 2017 - Cited by 22