Given that the Crimean and Congo hemorrhagic fever is one of the deadly viral diseases that occur seasonally due to the activity of the carrier “tick,” studying and developing a mathematical model simulating this illness are crucial. Due to the delay in the disease’s incubation time in the sick individual, the paper involved the development of a mathematical model modeling the transmission of the disease from the carrier to humans and its spread among them. The major objective is to comprehend the dynamics of illness transmission so that it may be controlled, as well as how time delay affects this. The discussion of every one of the solution’s qualitative attributes is included. According to the established basic reproduction number, the stability analysis of the endemic equilibrium point and the disease-free equilibrium point is examined for the presence or absence of delay. Hopf bifurcation’s triggering circumstance is identified. Using the center manifold theorem and the normal form, the direction and stability of the bifurcating Hopf bifurcation are explored. The next step is sensitivity analysis, which explains the set of control settings that have an impact on how the system behaves. Finally, to further comprehend the model’s dynamical behavior and validate the discovered analytical conclusions, numerical simulation has been used.
This Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters (as done in the first edition 2019). Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. While the revised new chapters have been added (as the curr
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters (as done in the first edition 2019). Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. While the revised new chapters have been added (as the curr
... Show MoreThis research shows the problem of the economic development of underdeveloped countries in an unconventional way, as these papers explain the problems of the economic development. This research not only reviews the problems, but it illustrates them in a philosophical way, basis of the data of modernity, this mean it is a process of connecting between the absence of the modernity values and the failure of development in underdeveloped countries. The Search follows the descriptive approach to get to the goal of search by four main axes. The first axis includes clarifying modernity and its principles, the second axis includes clarifying the economic development , the third axis includes the features of the mod
... Show Moreهدفت هذه الدراسة إلى تحليل نتائج الاختبار الوطني الموحد الذي تطبقه وزارة التربية والتعليم الفلسطينية في مادة الرياضيات لطلبة الصف الثامن الأساسي في المدارس الحكومية في محافظة طولكرم، وذلك لمعرفة مستوى الطلبة على هذا الاختبار في ضوء متغيرات الجنس والمنطقة التعليمية ونوع المدرسة، ومعرفة علاقة التحصيل على هذا الاختبار بتحصيل الطلبة المدرسي والمعدل العام. ولتحقيق ذلك تم تحليل درجات (3218) طالباً وطالبة؛ وهم ي
... Show MoreIn this paper, we will provide a proposed method to estimate missing values for the Explanatory variables for Non-Parametric Multiple Regression Model and compare it with the Imputation Arithmetic mean Method, The basis of the idea of this method was based on how to employ the causal relationship between the variables in finding an efficient estimate of the missing value, we rely on the use of the Kernel estimate by Nadaraya – Watson Estimator , and on Least Squared Cross Validation (LSCV) to estimate the Bandwidth, and we use the simulation study to compare between the two methods.
This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time t . The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integrated with the FD method t
... Show More