In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured to simulate steady state harmonic load at different operating frequencies. Total of 84 physical models were performed. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were tested at the surface and at 50 mm depth below model surface. Meanwhile the investigated parameters of the soil condition include dry and saturated sand for two relative densities 30% and 80%. The response of the footing was elaborated by measuring the amplitude of displacement by the vibration meter. The response of the soil to dynamic loading includes measuring the stresses inside the soil using piezoelectric sensors as well as measuring the excess pore water pressure using pore water pressure transducers. It was concluded that the maximum displacement amplitude response of the foundation resting on dry sand models is more than that on the saturated sand by about 5.0–10%. The maximum displacement amplitude of footing is reduced to half when the size of footing is doubled for dry and saturated sand. The final settlement (St) of the foundation increases with increasing the amplitude of dynamic force, operating frequency and degree of saturation. Meanwhile, it is reduced with increasing the relative density of sand, modulus of elasticity, and embedding inside soils. The excess pore water pressure increases with increasing the relative density of the sand, the amplitude of dynamic loading and the operating frequency. In contrast, the rate of dissipation of the excess pore water pressure during dynamic loading is more in the case of loose sand.
Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreThe development of the internet of things (IoT) and the internet of robotics (IoR) are becoming more and more involved with our daily lives. It serves a variety of tasks some of them are essential to us. The main objective of SRR is to develop a surveillance system for detecting suspicious and targeted places for users without any loss of human life. This paper shows the design and implementation of a robotic surveillance platform for real-time monitoring with the help of image processing, which can explorer places of difficult access or high risk. The robotic live streaming is via two cameras, the first one is fixed straight on the road and the second one is dynamic with tilt-pan ability. All cameras have image processing capabilities t
... Show MoreNowadays, it is convenient for us to use a search engine to get our needed information. But sometimes it will misunderstand the information because of the different media reports. The Recommender System (RS) is popular to use for every business since it can provide information for users that will attract more revenues for companies. But also, sometimes the system will recommend unneeded information for users. Because of this, this paper provided an architecture of a recommender system that could base on user-oriented preference. This system is called UOP-RS. To make the UOP-RS significantly, this paper focused on movie theatre information and collect the movie database from the IMDb website that provides informatio
... Show MoreBackground: War represents a major human crisis; it destroys communities and results in ingrained consequences for public health and well-being
Objective: We set this study to shed light on the public health status in Iraq after the successive wars, sanctions, sectarian conflicts, and terrorism, in light of certain health indicators.
Design: The primary source of data for this analysis comes from the Iraqi Ministry of Health, and The World Health Organization disease surveillance.
Results: Most of the morbidity indicators are high, even those that are relatively declining recently, are still higher than those repor
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreCover crops (CC) improve soil quality, including soil microbial enzymatic activities and soil chemical parameters. Scientific studies conducted in research centers have shown positive effects of CC on soil enzymatic activities; however, studies conducted in farmer fields are lacking in the literature. The objective of this study was to quantify CC effects on soil microbial enzymatic activities (β-glucosidase, β-glucosaminidase, fluorescein diacetate hydrolase, and dehydrogenase) under a corn (Zea mays L.)–soybean (Glycine max (L.) Merr.) rotation. The study was conducted in 2016 and 2018 in Chariton County, Missouri, where CC were first established in 2012. All tested soil enzyme levels were significantly different between 2016 and 2018
... Show MoreIdentification of pathogens and locating their inocul¬um source (S) are the first strategies toward successful disease management program the pretransplating seedl¬ing damping - off problem on vegetable crops was found to be caused by Pythium aphanidermatum and Rhizocto¬nia solani. Both fungi were isolated from peat (moss) for the first time in Iraq. In addition, considerable num¬ber of pathogenic fungi was found as contaminants in soil samples from Alrashidiah vegetable covered farming station. Among the isolated fungi were: Pythium apha¬nidermatum, Rhizoctonia solani, Sclerotinia sclerotiorum, Fusarium oxysporum, Fusarium solani phialophora spp., Cephalisporium spp Rizopus stolonfier and Botrytis cine¬rea, in addition to several
... Show MoreSoil water use and water storage vary by vegetative management practices, and these practices affect land productivity and hydrologic processes. This study investigated the effects of agroforestry buffers (AB), grass buffers (GB), and biofuel crops (BC), relative to row crops (RC) on soil water use for a claypan soil in northern Missouri, USA. The experiment located at the Greenley Memorial Research Center included RC, AB, GB, and BC established in 1991, 1997, 1997, and 2012, respectively. Soil water reflectometer sensors installed at 5‐, 10‐, 20‐, and 40‐cm depths monitored soil water from April to November in 2017 and 2018. Results showed significant differences in weekly volumetric water content (VWC) among treatments for all fou
... Show MoreA survey of entomopathogenic and other opportunistic fungi isolated from soil samples collected from insect hibernation sites in different habitats in Kurdistan region of Iraq was carried out during October to December 2009. By using dilution plate method, two entomopathogenic species (Beauveria bassiana (Bals.) Vuill.and Isaria javanica (Friedrichs & Bally) Samson & Hywel-Jones) were detected with isolation percentage (38.46%) each. Other opportunistic fungi such as Alternaria alternata, Aspergillus flavus, A.niger, Penicillium glabrum, P. digitatum, Rhizopus stolonifer and Syncephalastratum racemosum