Reinforced concrete slabs are one of the most important and complicated elements of a building. For supported edges slabs, if the ratio of long span to short span is equal or less than two then the slab is considered as two-way slab otherwise is consider as one-way slab. Two-way reinforced concrete slabs are common in use in reinforced concrete buildings due to geometrically arrangement of columns suggested by architects who prefer a symmetric distribution of columns in their plans. Elastic theory is usually used for analysis of concrete slabs. However, for several reasons design methods based on elastic principles are limited in their function. Correspondingly, limit state analysis offers a powerful technique for considering such matter. The Yield Lines Theory, which is one of limit state analysis based on expected failure criteria of slabs. The assumed failure criteria is termed by a pattern of yield lines, along that the reinforcement has yielded and the location of which counts loads and boundary conditions. This paper deals with comparison of Method 3 for two-way slabs that was provided by the ACI Code and exact derivation of this method by the Yield Lines Theory. Total of nine cases of slabs that have been described by method three are studied and evaluated by plastic analysis assumptions of the yield lines theory. The results are summarized in terms of proposed formulae that derived according to the Yield Lines Ttheory, which could be used as an alternative method for design of two-way reinforced concrete slabs in the ACI Code.
Transition metal complexes of Y(III), La(III) and Rh(III) with azo dye 2,4-dimethyl-6- (4-nitro-phenylazo)-phenol derived from 4-nitroaniline and 2,4-dimethylphenol were synthesized. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR,UV-Vis and 1HNMR, as well as conductivity measurements. The nature of the complexes formed were studies following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1x10-4- 3x10-4). High molar absorbtivity of the complex solutions were observed. From the analytical data, the stoichiomerty of the complexes has been found to be 1:3 (Metal:ligand). On the basis of Physicochemical data octahedral geometries were as
... Show MoreThis study investigated the prevalence of quinolones resistance proteins encoding genes (qnr genes) and co-resistance for fluoroquinolones and β-lactams among clinical isolates of Klebsiella pneumoniae. Out of 150 clinical samples, 50 isolates of K. pneumoniae were identified according to morphological and biochemical properties. These isolates were collected from different clinical samples, including 15 (30%) urine, 12 (24%) blood, 9 (18%) sputum, 9 (18%) wound, and 5 (10%) burn. The minimum inhibitory concentrations (MICs) assay revealed that 15 (30%) of isolates were resistant to ciprofloxacin (≥4µg/ml), 11 (22%) of isolates were resistant to levofloxacin (≥8 µg/ml), 21 (42%) of isolates were re
... Show Morefication of benzaldehyde (C6H5CHO) and O- amino aniline O-C6H4(NH2)2 in ethanol with 8- Hydroxyquinoline (8HQ) . Formed compounds were acquired of 1:1:2 molar proportion reactions for metal ions and ligands (L) and 2(8HQ) during reaction for MCl2 .nH2O salt products complexes conformable into the forms [M(L)(8HQ)2] ,where M = Mn(II),Co(II) and Ni(II). Whole the compounds were identified during the basis of their; FT-IR and U.V spectrum, melting point, molar conduct, identify of the percentage from the metal at the complexes via flame (AAS), C, H and N content of the Schiff base (L) and metal complexes were analysis and magnetic susceptibility menstruations. A hexagonal coordinated metal complexes were proposed to the separated complexes of
... Show MoreA novel Schiff base ligand (DBC) synthesized from 4-chlorobenzoic acid, along with its Cu (II) and Co (II) complexes, was prepared and characterized using FT-IR, 1H and 13C-NMR, UV-Vis spectroscopy, as well as magnetic and conductivity measurements. Based on this, a tetrahedral structure of [M(DBC)Cl2] was proposed for the complexes. Antioxidant activity of the compounds was assessed and compared to ascorbic acid, revealing that the copper complex exhibited superior antioxidant properties compared to the cobalt complex and the ligand. Furthermore, the antibiofilm potential of the copper and cobalt complexes was assessed against five clinically relevant bacterial species (P.aeruginosa, E.coli, K.pneumoniae, S.aureus and S.typhi) usin
... Show Moreتم تحضير ثلاث معقدات جديدة Ni (II)و Cu (II) و Zn (II) باستخدام الليكند المحضر الجديد من تفاعل حامض مالونيك ثنائي هيدرازايد مع 2-بيريدين كربوكسالديهايد. حيث شخصت المعقدات لمحضرة وكذلك الليكند باستخدام تقنيات مختلفة مثل FT-IR و UV-Vis و Mass و 1H-NMR و 13C-NMR وتحليل العناصر CHN و تقدير محتوى الكلور والموصلية المولارية والحساسية المغناطيسية والامتصاص الذري لتشخيص هذه المركبات. لكل معقد محضر جديد من النيكل والنحاس والزنك ، كشفت نتائج ا
... Show MoreA series of Schiff base-bearing salicylaldehyde moiety compounds (1-4) had been designed, synthesized, subjected to insilico ADMET prediction, molecular docking, characterization by FT-IR, and CHNS analysis techniques, and finally to their Anti-inflammatory profile using cyclooxygenase fluorescence inhibitor screening assay methods along with standard drugs, celecoxib, and diclofenac. The ADMET studies were used to predict which compounds would be suitable for oral administration, as well as absorption sites, bioavailability, TPSA, and drug likeness. According to the results of ADME data, all of the produced chemicals can be absorbed through the GIT and have passed Lipinski’s rule of five. Through molecular docking with PyRx 0.8, these
... Show MoreIn this study, iron was coupled with copper to form a bimetallic compound through a biosynthetic method, which was then used as a catalyst in the Fenton-like processes for removing direct Blue 15 dye (DB15) from aqueous solution. Characterization techniques were applied on the resultant nanoparticles such as SEM, BET, EDAX, FT-IR, XRD, and zeta potential. Specifically, the rounded and shaped as spherical nanoparticles were found for green synthesized iron/copper nanoparticles (G-Fe/Cu NPs) with the size ranging from 32-59 nm, and the surface area was 4.452 m2/g. The effect of different experimental factors was studied in both batch and continuous experiments. These factors were H2O2 concentration, G-Fe/CuNPs amount, pH, initial DB15
... Show More