Preferred Language
Articles
/
FELBSJoBMeyNPGM3HcDS
Computational methods for solving nonlinear ordinary differential equations arising in engineering and applied sciences
...Show More Authors

In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between the methods has been presented. In addition, the maximum error remainder () has been computed to demonstrate the accuracy of the proposed methods. The results persuasively prove that CM and D-CMs are reliable and accurate in obtaining the approximate solutions to the problems, with obvious superiority in accuracy for D-CMs than for CM.

Scopus Crossref
View Publication
Publication Date
Thu Jun 01 2017
Journal Name
Chaos, Solitons & Fractals
A semi-analytical iterative method for solving nonlinear thin film flow problems
...Show More Authors

View Publication
Crossref (19)
Crossref
Publication Date
Mon Jan 04 2021
Journal Name
Iium Engineering Journal
RELIABLE ITERATIVE METHODS FOR SOLVING 1D, 2D AND 3D FISHER’S EQUATION
...Show More Authors

In the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (H

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
An Algorithm for nth Order Intgro-Differential Equations by Using Hermite Wavelets Functions
...Show More Authors

In this paper, the construction of Hermite wavelets functions and their operational matrix of integration is presented. The Hermite wavelets method is applied to solve nth order Volterra integro diferential equations (VIDE) by expanding the unknown functions, as series in terms of Hermite wavelets with unknown coefficients. Finally, two examples are given

View Publication Preview PDF
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Computational Science
Novel approximate solution for fractional differential equations by the optimal variational iteration method
...Show More Authors

View Publication
Crossref (37)
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Computational Science
Novel approximate solution for fractional differential equations by the optimal variational iteration method
...Show More Authors

Crossref (37)
Clarivate Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Gazi University Journal Of Science
Reliable Iterative Methods for Solving the Falkner-Skan Equation
...Show More Authors

View Publication
Crossref (8)
Crossref
Publication Date
Mon Jan 20 2020
Journal Name
Kuwait Journal Of Science
Three iterative methods for solving Jeffery-Hamel flow problem
...Show More Authors

In this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems.

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Boundary-domain integral method and homotopy analysis method for systems of nonlinear boundary value problems in environmental engineering
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
Oscillations of Third Order Half Linear Neutral Differential Equations
...Show More Authors

In this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.

View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Fractional Brownian motion inference of multivariate stochastic differential equations
...Show More Authors

Recently, the financial mathematics has been emerged to interpret and predict the underlying mechanism that generates an incident of concern. A system of differential equations can reveal a dynamical development of financial mechanism across time. Multivariate wiener process represents the stochastic term in a system of stochastic differential equations (SDE). The standard wiener process follows a Markov chain, and hence it is a martingale (kind of Markov chain), which is a good integrator. Though, the fractional Wiener process does not follow a Markov chain, hence it is not a good integrator. This problem will produce an Arbitrage (non-equilibrium in the market) in the predicted series. It is undesired property that leads to erroneous conc

... Show More
Scopus (4)
Scopus