Toxoplasma gondii is an obligate intracellular protozoan parasite; it spreads via the circulatory system during infection and causes chronic infection in various organs. Toxoplasmosis affects nearly one third of people worldwide, especially immunocompromised people. This study aimed to determine the effect of toxoplasmosis on renal function in hemodialysis patients. Overall 300 patients referred to the Medical City, Al-Karama General Hospital, Baghdad, Iraq were enrolled from 2021 to 2022. All serum samples were tested for T. gondii immunoglobulins (IgG and IgM) antibodies, urea and creatinine levels. In patients undergoing hemodialysis, the results revealed a high positivity percentage for anti-Toxoplasma IgG. In hemodialysis patients infected with T. gondii, the urea and creatinine levels were higher than the controls. The mean urea level was high in hemodialysis patients infected with toxoplasmosis compare with hemodialysis patient without toxoplasmosis in different gender and age while the level of creatinine had no significant differences in hemodialysis patient with or without toxoplasmosis. These finding suggest that the incidental rate of toxoplasmosis could be considered as an indication to the high risk of hemodialysis patients.
In this paper, a procedure to establish the different performance measures in terms of crisp value is proposed for two classes of arrivals and multiple channel queueing models, where both arrival and service rate are fuzzy numbers. The main idea is to convert the arrival rates and service rates under fuzzy queues into crisp queues by using graded mean integration approach, which can be represented as median rule number. Hence, we apply the crisp values obtained to establish the performance measure of conventional multiple queueing models. This procedure has shown its effectiveness when incorporated with many types of membership functions in solving queuing problems. Two numerical illustrations are presented to determine the validity of the
... Show MoreThe possibility of using activated carbon developed from date palm seeds wastes as a permeable reactive barrier (PRB) to remove copper from polluted shallow groundwater was investigated. The activated carbon has been developed from date palm seeds by dehydrating methods using concentrated sulfuric acid. Batch tests were performed to characterize the equilibrium sorption properties of new activated carbon in copper-containing aqueous solutions, while the sandy soil (aquifer) was assumed to be inert. Under the studied conditions, the Langmuir isotherm model gives a better fit for the sorption data of copper by activated carbon than other models. At a pilot scale, One-dimensional column experiments were performed, and an integrated model ba
... Show MoreThis research deals with the design and simulation of a solar power system consisting of a KC200GT solar panel, a closed loop boost converter and a three phase inverter by using Matlab / Simulink. The mathematical equations of the solar panel design are presented. The electrical characteristics of the panel are tested at the values of 1000 for light radiation and 25 °C for temperature environment. The Proportional Integral (PI) controller is connected as feedback with the Boost converter to obtain a stable output voltage by reducing the oscillations in the voltage to charge a battery connected to the output of the converter. Two methods (Particle Swarm Optimization (PSO) and Zeigler- Nichols) are used for tuning
... Show MoreThe Ligand 6,6--(1,2-benzenediazo) bis (3-aminobenzoicacid) derived from o-phenylenediamine and 3-aminobenzoicacid was synthesized. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions (CoII, NiII, CuII and ZnII ) in aqueous ethanol with a 1:1 M:L ratio and at optimum pH. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). H
... Show MoreAdvanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m
... Show MoreBackground: The world is in front of two emerging problems being scarceness of virgin re-sources for bioactive materials and the gathering of waste production. Employment of the surplus waste in the mainstream production can resolve these problems. The current study aimed to prepare and characterize a natural composite CaO-SiO2 based bioactive material derived from naturally sustained raw materials. Then deposit this innovative novel bioactive coating composite materials overlying Yttria-stabilized tetragonal zirconia substrate. Mate-rials and method; Hen eggshell-derived calcium carbonate and rice husk-derived silica were extracted from natural resources to prepare the composite coating material. The manufac-tured powder was characterized
... Show MoreApple slice grading is useful in post-harvest operations for sorting, grading, packaging, labeling, processing, storage, transportation, and meeting market demand and consumer preferences. Proper grading of apple slices can help ensure the quality, safety, and marketability of the final products, contributing to the post-harvest operations of the overall success of the apple industry. The article aims to create a convolutional neural network (CNN) model to classify images of apple slices after immersing them in atmospheric plasma at two different pressures (1 and 5 atm) and two different immersion times (3 and again 6 min) once and in filtered water based on the hardness of the slices usin