The 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and 1 g of graphene, the maximum efficiency of phenol removal of 92.58 % and chemical oxygen demand (COD) of 89.33 % were achieved with 32.976 kWh kg-1 phenol of consumed power. Based on the analysis of variance (ANOVA) results, the time has the highest impact on phenol removal efficiency, followed by iron foam and graphene dosage. In the present study, the 3D electro-Fenton technique with iron foam partials and carbon fiber modified with graphene was detected as a great choice for removing phenol from aqueous solutions due to its high efficiency, formation of highly reactive species, with excellent iron ions source electrode.
The design was distinguished in Late Twenty-First Century With new and new methods Through which the ability to adapt all technical media in the formation of two-dimensional and three-dimensional figures and shapes was achieved .
Which led to the emergence of endless sets of design ideas characterized by the heterogeneity of design forms and design solutions that preceded it. The designer could not access these creations in various architectural and artistic fields only through computer programs, especially those related to the activation of mathematical logic and what is known as algorithms in the formation and construction of the form, which led to the emergence of the "parametric direction" and the problem of research is summarized
In this research we solved numerically Boltzmann transport equation in order to calculate the transport parameters, such as, drift velocity, W, D/? (ratio of diffusion coefficient to the mobility) and momentum transfer collision frequency ?m, for purpose of determination of magnetic drift velocity WM and magnetic deflection coefficient ? for low energy electrons, that moves in the electric field E, crossed with magnetic field B, i.e; E×B, in the nitrogen, Argon, Helium and it's gases mixtures as a function of: E/N (ratio of electric field strength to the number density of gas), E/P300 (ratio of electric field strength to the gas pressure) and D/? which covered a different ranges for E/P300 at temperatures 300°k (Kelvin). The results show
... Show More
Background: This study aimed to determine the value of Beta angle for a sample of Iraqi adults with class I skeletal and dental relations and to verify the existence of sexual dimorphism and to find out the relation between this angle and other craniofacial measurements. Materials and Methods: Sixty dental students (23 males and 37 females) with an age ranged between 20-31 years old and having class I skeletal and dental relations were chosen for this study. Each student was subjected to clinical examination and digital true lateral cephalometric radiograph. The radiographs were analyzed using AutoCAD 2007 computer program to measure the angular and linear variables. Descriptive statistics were obtained for the measurements for both genders
... Show MoreAtenolol was used with ammonium molybdate to prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on reaction between atenolol and ammonium molybdate in an aqueous medium to obtain a dark brown precipitate. Optimum parameters was studied to increase the sensitivity for developed method. A linear range for calibration graph was 0.1-3.5 mmol/L for cell A and 0.3-3.5 mmol/L for cell B, and LOD 133.1680 ng/100 µL and 532.6720 ng/100 µL for cell A and cell B respectively with correlation coefficient (r) 0.9910 for cell A and 0.9901 for cell B, RSD% was lower than 1%, (n=8) for the determination of ate
... Show MoreStructural buildings consist of concrete and steel, and these buildings have confronted many challenges from various aggressive environments against the materials manufactured from them. It contains high water levels and buildings whose concrete cover may be damaged and thus lead to the deterioration and corrosion of steel. It was important to have an alternative to steel, such as the glass fiber reinforced polymer (GFRP), which is distinguished by its great effectiveness in resisting corrosion, as well as its strong tensile resistance. Still, one of its drawbacks is that it has a low modulus of elasticity. This research article aims to conduct a numerical study using the nonlinear fi
Background: The liver is one of the most common organs
injured after blunt abdominal trauma. The control of severe
hemorrhage remains a problem.
Methods: One-hundred thirty-eight patients diagnosed as
liver injury between 09/2003 and 08/2006 had been evaluated
prospectively in Al- Kindy Teaching Hospital.
A distinction was made between hemodynamically stable and
unstable patients. Different modalities of surgical procedures
were done concentrating on perihepatic gauze packing.
Results: (60 out of 138) patients included in the study were
clinically evaluated as hemodynamically stable. The average
abbreviated injury severity score (ISS) was 25. Twenty
patients underwent abdominal surgery. In 12 of them