Academic writing is a key skill for success in academic life, particularly for graduate students of a foreign language. The importance of writing to academic culture, practice, and knowledge building has led to a great deal of research in many fields, including rhetoric and composition, linguistics, applied linguistics, and English for Academic Purposes (EAP). Often, studies and research investigating academic writing are motivated by the need to inform the learning of writing to native and non-native English-speaking students, through both descriptions of professional academic writing as well as through comparisons of novice writer (native and non-native Englishspeaking) and expert production. However, while learning about academic writing to better inform teaching content and practices is an important aim, Bazerman (1994, P. 10) points out that understanding language use in the disciplines also helps us to use language more effectively, can guide writers and editors as they work with contributor texts, and helps provide non-specialist readers with access to the discourse of the disciplines. Thus, describing and understanding patterns and pragmatic of argumentation of language use in academic writing allows us to understand the disciplinary cultures and practices that they embody. This is why many linguists and scholars have long been fascinated with the language of academia, particularly in the form of written texts. This interest has developed and expanded over the past few decades, in part due to the premise that much can be learned about disciplinary practices and cultures by examining academic writing: the primary means of the transmission of knowledge in academic fields.
Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreThe meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreComparison is the most common and effective technique for human thinking: the human mind always judges something new based on its comparison with similar things that are already known. Therefore, literary comparisons are always clear and convincing. In our daily lives, we are constantly forced to compare different things in terms of quantity, quality, or other aspects. It is known that comparisons are used in literature in order for speech to be clear and effective, but when these comparisons are used in everyday speech, it is in order to convey the meaning directly and quickly, because many of these expressions used daily are comparisons. In our research, we discussed this comparison as a means of metaphor and expression in Russia
... Show MoreBy definition, the detection of protein complexes that form protein-protein interaction networks (PPINs) is an NP-hard problem. Evolutionary algorithms (EAs), as global search methods, are proven in the literature to be more successful than greedy methods in detecting protein complexes. However, the design of most of these EA-based approaches relies on the topological information of the proteins in the PPIN. Biological information, as a key resource for molecular profiles, on the other hand, acquired a little interest in the design of the components in these EA-based methods. The main aim of this paper is to redesign two operators in the EA based on the functional domain rather than the graph topological domain. The perturb
... Show MoreThe amount of protein in the serum depends on the balance between the rate of its synthesis, and that of its catabolism or loss. Abnormal metabolism may result from nutritional deficiency, enzyme deficiency, abnormal secretion of hormones, or the actions of drugs and toxins. Renal cancer is the third most common malignancy of the genitourinary system, and accounts for 3% of adult malignancies globally. Total serum proteins were measured in malignant kidney tumor, benign kidney tumors, and non tumoral kidney diseases patient groups, as well as in healthy individuals. A significant decrease (p< 0.001) of total serum protein levels in patients with malignant kidney tumors when compared with those of benign tumors, non tumoral diseases, and hea
... Show More