Tin Selenide (SnSe) Nano crystalline thin films of thickness 400±20 nm were deposited on glass substrate by thermal evaporation technique at R.T under a vacuum of ∼ 2 × 10− 5 mbar to study the effect of annealing temperatures (as-deposited, 100, 150 and 200) °C on its structural, surface morphology and optical properties. The films structure was characterized using X-ray diffraction (XRD) which showed that all the films have polycrystalline in nature and orthorhombic structure, with the preferred orientation along the (111) plane. These films was synthesized of very fine crystallites size of (14.8-24.5) nm, the effect of annealing temperatures on the cell parameters, crystallite size and dislocation density were observed. Surface morphology of SnSe films as-prepared and annealed are investigated using atomic force microscopy (AFM) analysis, the grain size of these films vary in the rang from (60.12 to 94.70)nm with increasing annealing temperatures. The results obtained from XRD and AFM indicated that these films were Nano crystalline. The optical constants like absorption coefficient, loss factor, quality factor and optical conductivity of these films has been evaluated. The optical properties revealed that SnSe films have optical energy band gap values increase from (1.5-2.2) eV upon annealing temperatures and high value of absorption coefficient hich implies choosing them in solar cell application.
Recently, important efforts have been made in an attempt to search for the cheapest and ecofriendly alternatives adsorbents. In the present work, waste molasses from Iraqi date palm (Zahdi) had been used as a provenance to produce charcoal for the removal of methylene blue (MB) dye from water. The optimum prepared charcoal was obtained at 150 C, by increasing temperature to 175 C, the charcoal had almost converted to ash. The obtained charcoal have been inspected for properties using scanning electron microscope (SEM), atomic force microscope (AFM), porosity and surface area. Adsorption data were optimized to Langmuir and Freundlich and adsorption parameters have been evaluated. The thermodynamic parameters like a change
... Show MoreIn this study, hydroxyapatite (HAP, Ca10(PO4)6(OH)2) has been prepared as bioceramic material with biological specifications useful to used for orthopedic and dental implant applications. Wet chemical processing seems to form the fine grain size and uniform characteristic nanocrystalline materials by the interstice factors controlling which affected the grain size and crystallinity in order to give good mechanical and/or constituent properties similar as natural bone. Fluorinated hydroxyapatite [4-6 wt% F, (FHA, Ca10(PO4)6(OH)2–Fx] was developed in new method for its posses to increased strength and to give higher corrosion resistance in biofluids than pure HAP moreover reduces the risk of dental caries. The phase's and functional groups
... Show MoreIn the present paper, chitosan Schiff base has been synthesized from chitosan’s reaction with the salicyldehyde. The AuNPs was manufacture by extract of onion peels as a reducing agent. The Au NPs that have been prepared were characterized through the UV-vis spectroscopy, XRD analyses and SEM microscopy. The polymer blends of the chitosan Schiff base / PVP has been prepared through using the approach of solution casting. Chitosan Schiff base / PVP Au nano-composites was prepared. Nano composites and polymer blends have been characterized by FTIR which confirm the formation of Schiff base by revealing a new band of absorption at 1651cm-1 as a result of the (C=N) imine group. SEM, DSC and TGA confirms the thermal stability of
... Show MoreIn the present paper, chitosan Schiff base has been synthesized from chitosan’s reaction with the salicyldehyde. The AuNPs was manufacture by extract of onion peels as a reducing agent. The Au NPs that have been prepared were characterized through the UV-vis spectroscopy, XRD analyses and SEM microscopy. The polymer blends of the chitosan Schiff base / PVP has been prepared through using the approach of solution casting. Chitosan Schiff base / PVP Au nano-composites was prepared. Nano composites and polymer blends have been characterized by FTIR which confirm the formation of Schiff base by revealing a new band of absorption at 1651cm-1 as a result of the (C=N) imine group. SEM, DSC and TGA confirms the thermal stability of the pr
... Show MoreA synthesis series of new heterocyclic derivatives (A2-A7) (pyrrole, pyridazine, oxazine and imidazol) derived from 4-acetyl-2,5-dichloro-1-(3,5-dinitrophenyl)-1H-pyrrole-3-carboxylate(A1) have been synthesised. Synthesis of compound (A2) by the reaction of starting material (A1) with hydroxyl amine hydrochloride in the presence of pyridine. Compound (A2) was reacted with hydrazine hydrate in dry benzene to give (A3) derivative. The compound )A3( deals with sodium nitrite to give diazonium salt, and the reaction diazonium salt with ethyl acetoacetate to produce compound (A4). To a mixture of compound (A4) and hydroxyl amine with sttired to yield (A5).Compound (A6) was prepared by reaction compound (A4) with thiosemicarbazide in presence
... Show MoreSludge from stone-cutting (SSC) factories and stone mines cannot be used as decorative stones, stone powder, etc. These substances are left in the environment and cause environmental problems. This study aim is to produce artificial stone composite (ASC) using sludge from stone cutting factories, cement, unsaturated resin, water, silicon carbide nanoparticles (SiC-NPs), and nano-graphene oxide (NGO) as fillers. Nano graphene oxide has a hydrophobic plate structure that water is not absorbed due to the lack of surface tension on these plates. NGO has a significant effect on the properties of artificial stone due to its high specific surface area and low density in the composite. Its uniform distribution in ASC is very low due to its hydropho
... Show MoreBackground: Polymethyl methacrylate (PMMA) is the most commonly used material in denture fabrication. The material is far from ideal in fulfilling the mechanical requirements. Midline fracture; poor thermal conductivity and water sorption, are common problem in this material. The purpose of this study was to evaluate the effect of addition of surface treated Aluminum oxide nano fillers on some properties of heat cured (PMMA). Materials and methods: In addition to controlled group of heat cured PMMA the silanized (Al2O3) nanoparticles was added to PMMA powder by weight in three different percentages 1wt%, 2wt% and 3wt%, mixed by probe ultra-sonication machine. 200 specimens were constructed and divided into 5 groups according to the test (e
... Show More