Tin Selenide (SnSe) Nano crystalline thin films of thickness 400±20 nm were deposited on glass substrate by thermal evaporation technique at R.T under a vacuum of ∼ 2 × 10− 5 mbar to study the effect of annealing temperatures (as-deposited, 100, 150 and 200) °C on its structural, surface morphology and optical properties. The films structure was characterized using X-ray diffraction (XRD) which showed that all the films have polycrystalline in nature and orthorhombic structure, with the preferred orientation along the (111) plane. These films was synthesized of very fine crystallites size of (14.8-24.5) nm, the effect of annealing temperatures on the cell parameters, crystallite size and dislocation density were observed. Surface morphology of SnSe films as-prepared and annealed are investigated using atomic force microscopy (AFM) analysis, the grain size of these films vary in the rang from (60.12 to 94.70)nm with increasing annealing temperatures. The results obtained from XRD and AFM indicated that these films were Nano crystalline. The optical constants like absorption coefficient, loss factor, quality factor and optical conductivity of these films has been evaluated. The optical properties revealed that SnSe films have optical energy band gap values increase from (1.5-2.2) eV upon annealing temperatures and high value of absorption coefficient hich implies choosing them in solar cell application.
Cadmium sulfide (CdS) nanocrystalline thin films have been prepared by chemical bath deposition (CBD) technique on commercial glass substrates at 70ºC temperature. Cadmium chloride (CdCl2) as a source of cadmium (Cd), thiourea (CS(NH2)2) as a source of sulfur and ammonia solution (NH4OH) were added to maintain the pH value of the solution at 10. The characterization of thin films was carried out through the structural and optical properties by X-ray diffraction (XRD) and UV-VIS spectroscopy. A UV-VIS optical spectroscopy study was carried out to determine the band gap of the nanocrystalline CdS thin film and it showed a blue shift with respect to the bulk value (from 3.9 - 2.4eV). In present w
... Show MoreTwelve compounds containing a sulphur- or oxygen-based heterocyclic core, 1,3- oxazole or 1,3-thiazole ring with hydroxy, methoxy and methyl terminal substituent, were synthesized and characterized. The molecular structures of these compounds were performed by elemental analysis and different spectroscopic tequniques. The liquid crystalline behaviors were studied by using hot-stage optical polarizing microscopy and differential scanning calorimetry. All compounds of 1,4- disubstituted benzene core with oxazole ring display liquid crystalline smectic A (SmA) mesophase. The compounds of 1,3- and 1,4-disubstituted benzene core with thiazole ring exhibit exclusively enantiotropic nematic liquid crystal phases.
In this work, we study the effect of doping Sn on the structural and optical properties of pure cadmium oxide films at different concentrations of Tin (Sn) (X=0.1,0.3 and 0.5) .The films prepared by using the laser-induced plasma at wavelength of laser 1064 nm and duration 9 ns under pressure reached to 2.5×10-2 mbar. The results of X-ray diffraction tests showed that the all prepared films are polycrystalline. As for the topography of the films surface, it was measured using AFM , where the results showed that the grain size increases with an increase in the percentage of doping in addition to an increase in the average roughness. The optical properties of all films have also been studied through the absorbance s
... Show MoreMeta stable phase of SnO as stoichiometric compound is deposited utilizing thermal evaporation technique under high vacuum onto glass and p-type silicon. These films are subjected to thermal treatment under oxygen for different temperatures (150,350 and 550 °C ). The Sn metal transformed to SnO at 350 oC, which was clearly seen via XRD measurements, SnO was transformed to a nonstoichiometric phase at 550 oC. AFM was used to obtain topography of the deposited films. The grains are combined compactly to form ridges and clusters along the surface of the SnO and Sn3O3 films. Films were transparent in the visible area and the values of the optical band gap for (150,350 and 550 °C ) 3.1,
This study describe the effect of temperature on the optical
properties of nickel(ii) phthalocyanine tetrasulfonic acid tetrasodium
salt (NiPcTs) organic thin films which are prepared by spin coating
on indium tin oxide (ITO-glass). The optical absorption spectra of
these thin films are measured. Present studies reveal that the optical
band gap energies of NiPcTs thin films are dependent on the
annealing temperatures. The optical band gap decreases with increase
in annealing temperature, then increased when the temperature rising
to 473K. To enhance the results of Uv-Vis measurements and get
more accurate values of optical energy gaps; the Photoluminescence
spectra of as-deposited and annealed NiPcTs thin fi