In this study, several ionanofluids (INFs) were prepared in order to study their efficiency as a cooling medium at 25 °C. The two-step technique is used to prepare ionanofluid (INF) by dispersing multi-walled carbon nanotubes (MWCNTs) in two concentrations 0.5 and 1 wt% in ionic liquid (IL). Two types of ionic liquids (ILs) were used: hydrophilic represented by 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4] and hydrophobic represented by 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6]. The thermophysical properties of the prepared INFs including thermal conductivity (TC), density and viscosity were measured experimentally. The TC measurement showed an enhancement of about 3% for INF and of 1% MWCNT in [EMIM][BF4] at a temperature of 298.15 K: the TC was 0.186 W/m.K, the kinematic viscosity was 100 centistokes (cSt), and the density was 1.283 g.cm−3. On the other hand, the TC of 1% MWCNT in [HMIM][PF6] INF enhanced by 5%. In this case, at a temperature of 298.15 K, the TC was 0.158 W/m, the kinematic viscosity was 1200 cSt, and the density was 1.294 g.cm−3. Furthermore, the stability of the prepared INFs was measured using the zeta potential method after 28 days of preparation. The results show very good dispersion of the nanoparticles in the ILs for all the prepared INFs. The zeta potential was -69.30 mV and - 45.34 mV for 0.5% and 1% MWCNT in [EMIM][BF4], respectively. On the other hand, zeta potential was -51.78 and -46.67 mV for 0.5% and 1% MWCNT in [HMIM][PF6], respectively. According to the obtained results, the preferable INFs to use as a cooling medium at 25 °C was the INF of 1 wt% MWCNT in [EMIM][BF4], since it provides better thermophysical properties than the other prepared INFs.
In the present study, new five polymers of acryloyl chloride have been synthesized by reaction 4-aminoantipyrine with many substituted acid chloride (A-E). Then condensation of polyacryloyl chloride with the product in one step (A-E), in a suitable solvent in the presence amount of (Et3N) to obtain new polyimides(A1-E5). The prepared compounds were characterized by UV. FT-IR, 1H-NMR and 13C-NMR spectroscopy and measuring of other physical properties such as softening point, melting point and solublities.
Methotrexate (MTX) is one of the most effective medications to treat rheumatoid arthritis (RA).Aserum of 60 Iraqi male patients suffering from RA as (G1) was newly diagnosis and the same patient in G1 after taking MTX as G2 and 40 Iraqi male healthy control as G3. Nesfatin-1 (Nf-1) is belong to the adipokine family withpleiotropic effect. Nf-1 has been found in different tissues, including stomach, pancreas, bone cells, cartilage and heart. Retinol binding protein (RBP4) was known as transpoter of retinol from its storage sites in the liver to the extrahepatic tissues. Moreover, RBP4 acts as adipokine and contributes in the pathophsyology of prototypic inflammatory disease, rheumatoid arthritis (RA). The results showed a significant increas
... Show MoreThe present work includes the preparation and characterization of{Co(II) , Ni(II), Pd(II), Fe(III) , Ru(III),Rh(III), Os(III) , Ir(III) , Pt(IV) and VO(IV)}complexes of a new ligand 4-[(1-phenyl-2,3-dimethyl-3-pyrozoline-5-one)azo]-N,N-dimethylanline (PAD). The product (PAD) was isolated,studies and characterized by phsical measurements,i.e., (FT-IR), (UV) Spectroscopy and elemental analysis(C.H.N). The prepared complexes were identified and their structural geometric were suggested in solid state by using flame atomic absorption, elemental analysis(C.H.N), (FT-IR) and (UV-Vis) Spectroscopy, as well as magnetic susceptibility and conductivity measurements . The study of the nature of the complexes formed in( ethanolic solution) following t
... Show MoreABSTRACT : This research involves the synthesis of five to seven heterocyclic compounds starting with Schiff’s bases which derived from oxime as a starting material. 1.3-oxazepine derivatives were prepared from adding different anhydrides to the Schiff bases, tetrazole and thiazolidinone derivatives synthesized from add sodium azide and thioglycolic acid to the same Schiff’s bases as a five members ring. Pyrimidine derivatives were prepared after the reaction of the azomethine group with acetyl chloride and then urea and thiourea to synthesis on derivatives contain the six members ring. Another step included identified and confirmed these compounds by FT- IR, 1HNMR, TLC and 13CNMR finally, step included the assay of biological activity
... Show MoreNumber of new polyester and polyamide are prepared as derivatives from 5,5`-(1,4-phenylene)-bis-(1,3,4-thiadiazole-2-amine) [C1], three series of heterocyclic compounds were synthesized.The first series includes the Schiff base [C2] prepared from the reaction between compound [C1] with p-hydroxy benzaldehyde in presence of acetic acid and absolute ethanol , then these derivatives have reaction with maleic anhydride , phthalic anhydride and sodium azide, respectively to obtain the compounds [C3-5] contaning (oxazepine and tetrazole) rings.The third series of compounds [C1-5] has transformed to their polymers [C6-15] by reaction with adipoyl chloride and glutroyl chloride , respectively. The reaction was followed by T.L.C and ident
... Show MoreThe research includes the preparation of several complexes of the internal transition elements lanthanide (Ln = La, Nd, Er, Gd, and Dy) containing the 4f shell, with Schiff bases resulting from condensation reactions between 4-antipyrinecarboxaldehyde and 2-aminobenzothiazoles. Schiff's base was identified using FTIR spectra, UV-vis spectroscopy, elemental microanalysis CHNSO, nuclear magnetic resonance, mass spectrometry, and TGA thermal analysis. The complexes were studied and identified with elemental microanalysis CHNSO, FTIR spectroscopy, UV-vis spectroscopy, TGA thermal analysis, conductivity measurement, and magnetic sensitivity. The result showed that these complexes were classified as homogeneous bidentate complexes with th
... Show MoreThe recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show More