In solar-thermal adsorption/desorption processes, it is not always possible to preserve equal operating times for the adsorption/desorption modes due to the fluctuating supply nature of the source which largely affects the system’s operating conditions. This paper seeks to examine the impact of adopting unequal adsorption/desorption times on the entire cooling performance of solar adsorption systems. A cooling system with silica gel–water as adsorbent-adsorbate pair has been built and tested under the climatic condition of Iraq. A mathematical model has been established to predict the system performance, and the results are successfully validated via the experimental findings. The results show that, the system can be operational at the unequal adsorption/desorption times. The performance of the system with equal time is almost twice that of the unequal one. The roles of adsorption velocity, adsorption capacity, overall heat transfer coefficient, and the performance of the cooling system are also evaluated.
A solar cell was manufactured from local materials and was dyed using dyes extracted from different organic plants. The solar cell glass slides were coated with a nano-porous layer of Titanium Oxide and infused with two types of acids, Nitric acid and Acetic acid. The organic dyes were extracted from Pomegranate, Hibiscus, Blackberry and Blue Flowers. They were then tested and a comparison was made for the amount of voltage they generate when exposed to sunlight. Hibiscus sabdariffa extract had the best performance parameters; also Different plants give different levels of voltage.
Low incoming discharge upstream of Samarra-Al Tharthar System leads to sediment accumulation and forming islands, especially an island upstream of Al Tharthar Regulator. This island and the sedimentation threaten the stability of the structure and reduce the efficiency of the system. This study aims to hydraulically identify the sedimentation problem mentioned above, to find solutions of how to control the sediment problems, and to develop the capacity of
the system for 500 years return period flood of 15060 m3/s. Surface Water Modeling System (SMS10.1) with two dimensional depth average models (RMA-2) software were used to simulate and analyze the system. The results of analysis showed that the maximum permissible discharge through t
Investigating the thermal and electrical gains and efficiencies influence the designed photovoltaic thermal hybrid collector (PVT) under different weather conditions. The designed system was manufactured by attaching a fabricated cooling system made of serpentine tubes to a single PV panel and connecting it to an automatic controlling system for measuring, monitoring, and simultaneously collecting the required data. A removable glass cover had been used to study the effects of glazed and unglazed PVT panel situations. The research was conducted in February (winter) and July (summer), and March for daily solar radiation effects on efficiencies. The results indicated that electrical and thermal gains increased by the incre
... Show MoreThis investigation integrates experimental and numerical approaches to study a novel solar air heater aimed at achieving an efficient design for a solar collector suitable for drying applications under the meteorological conditions of Iraq. The importance of this investigation stems from the lack of optimal exploitation of solar energy reaching the solar collector, primarily attributable to elevated thermal losses despite numerous designs employed in such solar systems. Consequently, enhancing the thermal performance of solar collectors, particularly those employed in crop drying applications, stands as a crucial focal point for researchers within this domain. Two identical double-pass solar air heaters were designed and constructed for
... Show MoreMolecular dynamics (MD) simulations were carried out in order to investigate the binding mode of axillaridine-A at the active site of human acetylcholinesterase (AChE) enzyme. 2.0 nanosecond of MD simulations was made for the protein and the complex to dynamically explore the active site and the behavior of the ligand at the peripheral AChE binding site. These calculations for the enzyme alone showed that the active site of AChE is located at the bottom of a deep and narrow cavity whose surface is lined with rings of aromatic residues and Tyr72 is almost perpendicular to the Trp286 ring and forms a stable - interaction. The size of the active site of the complex decreases with time due to increase the interaction. Axillaridine-A forms
... Show More