In the present study, a novel ligand (L) made of 2-hydroxynaphthaldehyde and 3-hydrazone-1,3-dihydro-indole-2-one(3-[(3-hydroxynaphthalen-2-yl-ethylidene)-hydrazono]-1,3-dihydro-indol-2-one). The ligand was characterized by FTIR, UV-vis, mass, 1H-NMR, 13C-NMR, and CHN elemental analysis. New complexes of this ligand were created by treating methanol and a drop of DMF solution of the produced ligand with the hydrated metal salts of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) in a molar ratio of 2:1 (L:M). As a result, complexes have been emerged and identified FTIR, UV-vis, C.H.N., chloride-containing, molar conductance, magnetic susceptibility, and atomic absorption. The characterization result for each complex indicated complexes with octahedral coordination geometry and tridentates with metal to ligand ratios of 1:2. The biological activities of the new compounds were examined against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) giving an acceptable inhibition efficiency.
Nanocrystalline micro-mesoporous ZSM/MCM-41 composite was synthesized using alkaline treatment method and two step of crystallization in poly tetraflouroethylene (PTFE) lined autoclave. The synthesized zeolites was characterized by X-Ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Atomic force microscopy (AFM), Fourier transport infrared (FTIR), and N2 adsorption-desorption (BET). It was approved that the best results for alkaline leaching can be got with 1.5M NaOH solution. High surface (BET) area of 630 m2/g with pore volume of 0.55 cm3/g has been got. AFM reports showed a nano-level size for average particle size of 50nm.
This research focuses on the synthesis of carbon nanotube (CNT) and Poly(3-hexylthiophene) (P3HT) (pristine polymer) with Ag doped (CNT/ P3HT@Ag) nanocomposite thin films to be utilised in various practical applications. First, four samples of CNT solution and different ratios of the polymer (P3HT) [0.1, 0.3, 0.5, and 0.7 wt.%] are prepared to form thin layer of P3HT@CNT nanocomposites by dip-coating method of Ag. To investigate the absorption and conductivity properties for use in various practical applications, structure, morphology, optical, and photoluminescence properties of CNT/P3HT @Ag nanocomposite are systematically evaluated in this study. In this regard, the UV/Vis/NIR spectrophotometer in the wavelength range of 350 to 7
... Show MoreThe present work focuses on the changing of the structural characteristics of the grown materials through different material characterization methods. Semiconductor CdSxSe 1-x nano crystallines have been synthesized by chemical vapor depostion. (X- ray Diffraction; XRD), (Field Emission Scanning Electron Microscopy; FESEM), measured the characterization of Semiconductor CdSxSe1-x nano crystallines. The optical properties of semiconductor CdSxSe1-x nanocrystallines have been studied by the photoluminescence (PL) (He-Cd pulsed ultraviolet laser at 325nm excitation wavelength) at room temperature. The results showed the change rule of photoluminsence peak at different S
... Show MoreIn this work, copper substituted cobalt ferrite nanoparticles with
chemical formula Co1-xCuxFe2O4 (x=0, 0.3, and 0.7), has been
synthesized via hydrothermal preparation method. The structure of
the prepared materials was characterized by X-ray diffraction (XRD).
The (XRD) patterns showed single phase spinel ferrite structure.
Average crystallite size (D), lattice constant (a), and crystal density
(dx) have been calculated from the most intense peak (311).
Comparative standardization also performed using smaller average
particle size (D) on the XRD patterns of as-prepared ferrite samples
in order to select most convenient hydrothermal synthesis conditions
to get ferrite materials with smallest average particl
In this work, the study of
In this study, the effect of grafting with magnesium (Mg) ratios (0.1, 0.3, 0.5) on the structural and optical properties of cadmium oxide films (CdO) was studied, as these films were prepared on glass bases using the method of pulse laser deposition (PLD). The crystallization nature of the prepared membranes was examined by X-ray diffraction technique (XRD), which showed that the synthesis of the prepared membranes is polycrystalline, and (AFM) images also showed that the increased deformation with magnesium led to an increase in the grain size ratio and a decrease in surface roughness, as well as the absorption coefficient was calculated. And the optical energy gap for the prepared membranes, where it was found that the absorption coef
... Show MoreIn these recent years, the world has witnessed a kind of social exclusion and the inability to communicate directly due to the Corona Virus Covid 19 (COVID-19) pandemic, and the consequent difficulty of communicating with patients with hospitals led to the need to use modern technology to solve and facilitate the problem of people communicating with each other. healthcare has made many remarkable developments through the Internet of things (IOT) and cloud computing to monitor real-time patients' data, which has enabled many patients' lives to be saved. this paper presents the design and implementation of a Private Backend Server Software based on an IoT health monitoring system concerned emergency medical services utilizing biosenso
... Show MoreThis paper performance for preparation and identification of six new complexes of a number of transition metals Cr (lII), Mn (I1), Fe (l), Co (II), Ni (I1), Cu (Il) with: N - (3,4,5-Trimethoxy phenyl-N - benzoyl Thiourea (TMPBT) as a bidentet ligand. The prepared complexes have been characterized, identified on the basis of elemental analysis (C.H.N), atomic absorption, molar conductivity, molar-ratio ,pH effect study, I. Rand UV spectra studies. The complexes have the structural formula ML2X3 for Cr (III), Fe (III), and ML2X2 for Mn (II), Ni (II), and MLX2 for Co (Il) , Cu (Il).