In the present study, a novel ligand (L) made of 2-hydroxynaphthaldehyde and 3-hydrazone-1,3-dihydro-indole-2-one(3-[(3-hydroxynaphthalen-2-yl-ethylidene)-hydrazono]-1,3-dihydro-indol-2-one). The ligand was characterized by FTIR, UV-vis, mass, 1H-NMR, 13C-NMR, and CHN elemental analysis. New complexes of this ligand were created by treating methanol and a drop of DMF solution of the produced ligand with the hydrated metal salts of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) in a molar ratio of 2:1 (L:M). As a result, complexes have been emerged and identified FTIR, UV-vis, C.H.N., chloride-containing, molar conductance, magnetic susceptibility, and atomic absorption. The characterization result for each complex indicated complexes with octahedral coordination geometry and tridentates with metal to ligand ratios of 1:2. The biological activities of the new compounds were examined against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) giving an acceptable inhibition efficiency.
In this work, synthesis of conducting polymeric films namely, PVC thin films was carried out containing Schiff base (L) with Cu2+, Cr3+, Ni2+, Co2+, in addition to inspecting the possibilities of measuring energy gap values of PVC-L-M with variety metal ions. These new polymeric films (PVC-L-M) were characterized by FTIR spectrophotometry, energy gap and surface morphology. The optical data recorded that the band gap values are influenced by the type of metals. All modified films have a red shift in optical properties in the ultraviolet region. The PVC-L-Co(II) was the lowest value of the optical band gap, 3.1 eV.
Synthesis and study liquid crystalline properties of new compounds with terminal groups of amides ([III]a-c,[IV]a-c and [VI]n), alkoxy series[V]n or ester with azo linkage ([IX]a-c and[X]a-c) containing thaizole ring. These series were synthesized by many steps starting from 4- hydroxyacetophenone or 4-aminoacetophenone. The synthesized compounds were characterized using melting points, FTIR, C.H.N.S analysis and for some of them 1H NMR spectroscopy. The liquid crystalline properties were studied by hot stage polarizing microscopy and differential scanning calorimetry DSC. All compounds of series [III]a-c,[IV]a-c and compounds [V]n showed enantiotropic liquid crystal. While the series [VI]n showed nematic mesomorphism except [VI]8 did not s
... Show MoreAccurate description of thermodynamic, structural, and electronic properties for bulk and surfaces of ceria (CeO2) necessitates the inclusion of the Hubbard parameter (U) in the density functional theory (DFT) calculations to precisely account for the strongly correlated 4f electrons. Such treatment is a daunting task when attempting to draw a potential energy surface for CeO2-catalyzed reaction. This is due to the inconsistent change in thermo-kinetics parameters of the reaction in reference to the variation in the U values. As an illustrative example, we investigate herein the discrepancy in activation and reaction energies for steps underlying the partial and full hydrogenation of acetyl
... Show MoreAntibiotic resistance is the capability of the strains to resist or protect themselves from the effects of an antibiotic. Such a resistance towards the current antimicrobials leads to the search of novel antimicrobials. Nanotechnology has been promising in different field of science and among it is the use of nanoparticles as antibacterial agents. The gastrointestinal tract seems to be the primary reservoir of uropathogenic E.coli (UPEC) in humans. UPEC strains harbour the urinary tract and cause urinary tract infection. They cause serious ailments in terms of humans. They develop resistance and increase their virulence by forming biofilms. They also show a remarkable locomotory movement with the aid of autoinducer controlled ge
... Show MoreIn this work, of New Ligand [(E)-5-hydroxy-4-(3-(4-methoxy phenyl) acryl amido) naphthalene -1- sulfonic acid] (ANS) was prepared by reflexing reaction of 4-amino-5-hydroxy naphthalene sulfonic acid with para methoxy cinnamic acid, this produced and described chemical was employed as ligand to prepare tri and di-organotin complexes by condensation reaction with the salts of organotin chloride (phenyl, butyl, and methyl tin chloride). Specialized methods, including elemental analysis, (tin and proton) magnetic resonance, and infrared spectra, were used to identify the complexes. DPPH (2,2-diphenyl-1-picrylhydrazyl) and CUPRAC (Cupric Reducing Antioxidant Capacity) are both commonly used methods for measuring antioxidant capacity in v
... Show MoreOil flow lines are used to transport oil and its derivatives from a well over long distances, and because oil wells produce other potentially corrosive products, such as carbon dioxide and Hydrogen sulfide, it is necessary to take methods to protect the pipeline from corrosion. One of these methods is the use of corrosion inhibitors in this study. Prepare 5-acetyl-2-anilino-4-dimethylaminothiazole and test it as a corrosion inhibitor on a sample of the Rumaila flow line at a constant temperature 25°C in (3.5%) NaCl and (3.5%) KCl solution in the absence and presence of different concentrations of inhibitor (0 mM, 0.01 mM, 0.03 M, 0.05 mM). by using liner polarization (Tafel slope). The inhibiter exhibited the best performance at hi
... Show MoreThe title compound, [Ru(C12H7Br2N2)2(CO)2], possesses a distorted octahedral environment about the Ru atom, with two cyclometallated 4,40-dibromoazobenzene ligands and two mutually cis carbonyl ligands. The donor atoms are arranged such that the N atoms are respectively trans to a carbonyl ligand and an aryl C atom. Comment The title compound, (I), has been prepared as a minor product of the reaction of Ru3(CO)12 and 4,40-dibromoazobenzene in refluxing n-octane; the major product is the cluster complex Ru3(3-NC6H4Br)2(CO)9 (Willis et al., 2005). Two strong (CO) absorptions at 2039 and 1991 cm1 in the IR spectrum of (I) are consistent with the presence of two mutually cis carbonyl groups. The crystal structure was investigated to ascertai
... Show More