A few examinations have endeavored to assess a definitive shear quality of a fiber fortified polymer (FRP)- strengthened solid shallow shafts. Be that as it may, need data announced for examining the solid profound pillars strengthened with FRP bars. The majority of these investigations don't think about the blend of the rigidity of both FRP support and cement. This examination builds up a basic swagger adequacy factor model to evaluate the referenced issue. Two sorts of disappointment modes; concrete part and pulverizing disappointment modes were examined. Protection from corner to corner part is chiefly given by the longitudinal FRP support, steel shear fortification, and cement rigidity. The proposed model has been confirmed utilizing an aggregate of 45 databases gathered from writing. Results show that the proposed model can evaluate a definitive shear quality. Structure of trial (DOE) programming was used to examine the impact of different parameter esteems on a definitive shear quality limit. The outcomes demonstrate that the shear range to powerful profundity proportion has the most astounding impact contrasted and alternate parameters.
Soaking dentures with disinfection solutions is an effective way of keeping dentures in a healthy status; however, immersions in these solutions have a negative effect on the bond strength of denture base and denture teeth. The aim of this study was to evaluate the bond strength between denture acrylic teeth and heat-cured Poly (methyl methacrylate) denture base material (with and without nano silica) after disinfection with different chemical disinfectants for a simulated period of six months. One hundred specimens of maxillary central incisors attached to PMMA were divided into two groups; 50 specimens of PMMA without nano silica and 50 specimens of PMMA reinforced with 5 wt% of nano silica. Specimens of each group were immersed in five i
... Show MoreObjective This study aimed to evaluate the effects of disinfectant solutions, namely, the alcoholic extract of Salvadora persica L. (A1 = 10% and A2 = 15%) and chlorhexidine digluconate (A3 = 2%), on the tear strength and hardness of room temperature vulcanizing (RTV) VST50F and heat temperature vulcanizing (HTV) Cosmesil M511 silicone elastomers before and after reinforcement with nanofillers (TiO2) and intrinsic pigment. Materials and Methods: A total of 320 specimens were prepared, with 160 specimens each for RTV and HTV silicone. Forty specimens were evaluated before disinfection and divided into two equal groups, namely, control (without additive) and experimental (with ad
To decrease the impact on the environment of building waste, the recycled aggregate may be used in various sustainable engineering applications, such as roller compacted concrete pavement (RCCP). This research examined how using recycled aggregate as a partial replacement for natural aggregate as coarse or fine affected the mechanical properties of roller-compacted concrete pavement. The recycled aggregate was crushed and sieved to coarse and fine aggregate before being used in the roller-compacted concrete pavement. Compressive strength, splitting tensile strength, and flexural strength were all evaluated after the samples were prepared at 28 and 90 days of curing. According to the study's findings, the partial replacem
... Show MoreTests were performed on Marshall samples and were implemented for permanent deformation and resilient modulus (Mr) under indirect tensile repeated loading (ITRL), with constant stress level. Two types of liquid asphalt (cutback and emulsion) were tried as recycling agents, aged materials that were reclaimed from field (100% RAP), samples were prepared from the aged mixture, and two types of liquid asphalt (cutback and emulsion) with a weight content of 0.5% were utilized to prepare a recycled mixture. A group of twelve samples was prepared for each mixture; six samples were tested directly for ITRL test (three samples at 25˚C and three samples at 40˚C), an average value for ITRL for every three samples was calculated (
... Show MoreThe objective of this research work is to evaluate the quality of central concrete plant of Al-Rasheed Company by using Six Sigma approach which is a measure of quality that strives for near elimination of defects using the statistical methods to improve outputs that are critical to customers. The fundamental objective of Six Sigma methodology is the implementation of a measurement-based strategy that focuses on process improvement and variation reduction to reach delighting customers, and then suggesting an improvement system to improve the production of concrete in Al-Rasheed State Contracting Construction Company.
A field survey includes two parts (open and close questionnaire) that aimed to get the data and information required f
Slurry-infiltrated fibrous concrete (SIFCON) is a special type of concrete that has great strength, as well as high ductility. However, the unit weight is high, which exceeds the unit weight of fiber-reinforced concrete, because of the high fiber content. This research aims to verify the compressive and flexural strength, as well as the density of SIFCON when using two different fibers (steel and polyolefin). Sometimes mono type of fiber steel or polyolefin, sometimes by hybridizing two types of fiber steel + polyplefin. Volume fraction (6% for all species) was used. Hook-end steel fiber and polyolefin fiber are used. With hybridization, a total volume fraction of 6% was used, which
The civil engineering field currently focus on sustainable development. It is important to develop new sustainable and economic generations of concrete, using eco-friendly materials in the construction industry with a fair amount of costs and minimizing the impact upon the environment by reducing CO2 emissions from the cement industry as a whole while still obtaining high cement quality and strength. The main objective of this research is to clarify the mechanical behavior and ability to use Portland limestone cement in producing self compacted concrete, due to the beneficious effec of the limestone cement economically and enviromently. The research investigates the effect of using steel and polymer meshs as reinforcement, where the results
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement.
The main conclusion of this study was that all ty
... Show MoreThe aim of this study is to propose reliable equations to estimate the in-situ concrete compressive strength from the non-destructive test. Three equations were proposed: the first equation considers the number of rebound hummer only, the second equation consider the ultrasonic pulse velocity only, and the third equation combines the number of rebound hummer and the ultrasonic pulse velocity. The proposed equations were derived from non-linear regression analysis and they were calibrated with the test results of 372 concrete specimens compiled from the literature. The performance of the proposed equations was tested by comparing their strength estimations with those of related existing equations from literature. Comparis
... Show More