This study describes preparation a new series of tetra-dentate N2O2 dinuclear complexes Cr(III), Co(II)and Cu(II) of the Schiff base 2-[5-(2-hydroxy-phenyl)-1,3,4-thiadiazol-2-ylimino]-methyl-naphthalen-1-ol], (LH2) derived from 1-hydroxy-naphthalene-2-carbaldehyde with 2-amino-5-(2-hydroxy-phenyl)-1,3,4-thiadiazole. These ligands were characterized by FT-IR, UV-Vis, Mass spectra, elemental analysis, and 1H-NMR. All prepared complexes have been characterized by conductance measurement, magnetic susceptibility, electronic spectra, infrared spectrum, thermal Analysis (TGA), and metal analysis by atomic absorption. The stoichiometry of metal to ligand, magnetic susceptibility, and electronic spectra measurements show an octahedral geom
... Show MoreThe existing investigation explains the consequence of irradiation of violet laser on the optic properties of (CoO2) films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser in this technique. From the XRD analysis, the crystalline existence with trigonal crystal system was when the received films were processed by continuous violet laser (405 nm) with power (1W) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time(0,30,45,60,75,90 min
Indexes of topological play a crucial role in mathematical chemistry and network theory, providing valuable insights into the structural properties of graphs. In this study, we investigate the Resize graph of G2(3), a significant algebraic structure arising from the exceptional Lie group (G2) over the finite field F3. We compute several well-known topological indices, including the Zagreb indices, Wiener index, and Randić index, to analyze the graph's connectivity and complexity. Our results reveal intricate relationships between the algebraic structure of G2(3) and its graphical properties, offering a deeper understanding of its combinatorial and spectral characteristics. These findings contribute to the broader study of algebraic graph t
... Show MoreThe existing investigation explains the consequence of irradiation of red laser on the optic properties of (CoO2) films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser in this technique. From the XRD analysis, the crystalline existence with trigonal crystal system was when the received films were processed by continuous red laser (700 nm) with power (>1000mW)for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time(0,30,45,60,75,90 mi
In this research, we studied the effect of concentration carriers on the efficiency of the N749-TiO2 heterogeneous solar cell based on quantum electron transfer theory using a donor-acceptor scenario. The photoelectric properties of the N749-TiO2 interfaces in dye sensitized solar cells DSSCs are calculated using the J-V curves. For the (CH3)3COH solvent, the N749-TiO2 heterogeneous solar cell shows that the concentration carrier together with the strength coupling are the main factors affecting the current density, fill factor and efficiency. The current density and current increase as the concentration increases and the
The poly(ethylene oxide) polymer (PEO) is doped with fine powder of MnCl2 salt and thin films of thickness (50–150 mm) with salt content (0, 5, 10, 15, and 20 wt%) are obtained. The AC electrical conductivity and dielectric constants are studied as a function of temperature through an impedance technique. It is found that AC conductivity increases and the calculated activation energy decreases with increasing temperature due to enhancement of the ionic conduction in the film bulk. The dielectric constants of the doped membranes increase with temperature. It is found that the peak value of the tanloss is shifted to a higher frequency at higher temperatures. The dielectric behavior is explained on the basis of
... Show MoreThin films of (CuO)x(ZnO)1-x composite were prepared by pulsed laser deposition technique and x ratio of 0≤ x ≤ 0.8 on clean corning glass substrate at room temperatures (RT) and annealed at 373 and 473K. The X-ray diffraction (XRD) analysis indicated that all prepared films have polycrystalline nature and the phase change from ZnO hexagonal wurtzite to CuO monoclinic structure with increasing x ratio. The deposited films were optically characterized by UV-VIS spectroscopy. The optical measurements showed that (CuO)x(ZnO)1-x films have direct energy gap. The energy band gaps of prepared thin films