Preferred Language
Articles
/
Eha_CYoBVTCNdQwCcJAg
Cladding Modified Fiber Bragg Grating for Copper Ions Detection
...Show More Authors

This paper reports a fiber Bragg grating (FBG) as a biosensor. The FBGs were etched using a chemical agent,namely,hydrofluoric acid (HF). This implies the removal of some part of the cladding layer. Consequently, the evanescent field propagating out of the core will be closer to the environment and become more sensitive to the change in the surrounding. The proposed FBG sensor was utilized to detect toxic heavy metal ions aqueous medium namely, copper ions (Cu2+). Two FBG sensors were etched with 20 and 40 μm diameters and fabricated. The sensors were studied towards Cu2+ with different concentrations using wavelength shift as a result of the interaction between the evanescent field and copper ions. The FBG sensors showed a good response in terms of significant wavelength shift in corresponding to varying Cu2+ concentrations when immersed in aqueous mediums. The sensors exhibited excellent repeatability towards Cu ions.The results demonstrate that the smaller FBG etching diameter, the better optical response in terms of wavelength and linearity. 

Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
The effect of using polyolefin fiber on some properties of slurry-infiltrated fibrous concrete
...Show More Authors
Abstract<p>Slurry-infiltrated fibrous concrete (SIFCON) is a special type of concrete that has great strength, as well as high ductility. However, the unit weight is high, which exceeds the unit weight of fiber-reinforced concrete, because of the high fiber content. This research aims to verify the compressive and flexural strength, as well as the density of SIFCON when using two different fibers (steel and polyolefin). Sometimes mono type of fiber steel or polyolefin, sometimes by hybridizing two types of fiber steel + polyplefin. Volume fraction (6% for all species) was used. Hook-end steel fiber and polyolefin fiber are used. With hybridization, a total volume fraction of 6% was used, which </p> ... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Effect of Adding Chopped Carbon Fiber (CCF) on the Improvement of Gypsum Plaster Characteristicssss
...Show More Authors
Abstract<p>The current work studies the effect of adding chopped carbon fiber (CCF) on gypsum plaster properties (precisely the compressive strength and the modulus of rupture). The research plan consists of using six mixes of gypsum plaster; these mixes are divided into two groups according to the (Water/Gypsum) ratios (0.5 & 0.6). Each group was divided into three subgroups according to CCF volume fraction (Vf): 0.0%, 0.2% and 0.4%. Three cubic (50×50×50) mm and three prismatic (40×40×160) mm samples were performed for each mix. It was found that, the addition of CCF to the gypsum plaster mixes increases both the compressive strength and the modulus of rupture for both (W/G) ratios, an</p> ... Show More
View Publication
Scopus (9)
Crossref (13)
Scopus Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Engineering
Non-Destructive Testing of Carbon Fiber Reinforced Magnetic Reactive Powder Concrete Containing Nano Silica
...Show More Authors

This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano Silica. Tap water has been used in mixing 12 of these mixtures, while the other 12 have been mixed using magnetic water. Nano Silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % were used. The results showed that the mixture containing 2.5%NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results showed that the fiber reinforced magnetic reactive powder concrete containing 2.5% NS (FRMRPCCNS)  has the higher bulk density, dynamic modulus of elasticity, ultrasonic pulse velocity  electrical resistivity and lesser absorption than fiber reinforced

... Show More
View Publication Preview PDF
Publication Date
Fri Feb 01 2019
Journal Name
International Journal Of Mechanical Engineering And Technology (ijmet)
INVESTIGATION THE PROPERTIES OF SILICONE RUBBER BLEND REINFORCED BY NATURAL NANOPARTICLES AND UHMWPE FIBER
...Show More Authors

Many faces are exposed to degradation, discoloration, changes in humidity. The primary objective has improved some properties of hybrid nanocomposites materials that used for restoring of the function maxillofacial prosthesis and improving the esthetic. In the present research different lengths chopped and continuous of ultrahigh molecular weight polyethylene (UHMWPE) fiber was added at selected percentage (0.0, 0.2% and 1%) to polymer blend composite (95%SR /5%PMMA: 0.2% Pomegranate Peels Powder (PPP)) for developing the properties of silicone rubber used for the maxillofacial prosthesis applications. Some mechanical and physical properties were done on the all prepared samples. The results showed that all properties have improved when add

... Show More
View Publication Preview PDF
Scopus (7)
Scopus
Publication Date
Mon Dec 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Evaluation Study of Glass Fiber Reinforced Polyester and Kevlar Reinforced Polyester by Taguchi Method
...Show More Authors

     In the present investigation two different types of fiber reinforced polymer composites were prepared by hand lay-up method using three different parameters (curing temperature, pressing load and fiber volume fraction). These composites were prepared from the polyester resin as the matrix material reinforced with glass fibers as first group of samples and mat Kevlar fibers as the second group, both with different volume fractions (4%, 8%, and 12%) of fibers. They were then tested by tensile strength and impact strength. The main objective in this study is to use Taguchi method for predicting the better parameters that give the better tensile and impact strength to the composites, and then preparing composites at

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 29 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Studying and Analyzing Operating Conditions of Hollow Fiber Membrane Preparation Process: A Review Paper
...Show More Authors

Polymeric hollow fiber membrane is produced by a physical process called wet or dry/wet phase inversion; a technique includes many steps and depends on different factors (starting from selecting materials, end with post-treatment of hollow fiber membrane locally manufactured). This review highlights the most significant factors that affect and control the characterization and structure of ultrafiltration hollow fiber membranes used in different applications.    

   Three different types of polymers (polysulfone PSF, polyethersulfone PES or polyvinyl chloride PVC) were considered to study morphology change and structure of hollow fiber membranes in this review. These hollow fiber membranes were manufactured with different pro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Mathematical model of optical amplifier using nonlinear stimulated Brillouin scattering (SBS) in optical fiber
...Show More Authors

We demonstrate the results of a mathematical model for investigation the nonlinear Stimulated Brillouin Scattering (SBS), which can be employed to achieve high optical amplifier. The SBS is created by interaction between the incident We demonstrate the results of a mathematical model for investigation the nonlinear Stimulated Brillouin Scattering (SBS), which can be employed to achieve high optical amplifier. The SBS is created by interaction between the incident light and the acoustic vibration fiber. The design criteria and the amplification characteristic of the Brillouin amplifier is demonstrated and discussed for fiber Brillouin amplifier using different pump power with different fiber length. The results show, high Brillouin gain can

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 02 2021
Journal Name
Al-qadisiyah Journal For Engineering Sciences
Improving the Moisture Damage Resistance of HMA by Using Ceramic Fiber and Hydrated Lime
...Show More Authors

The Moisture damage is considered as one of the main challenge for the experts in the field of asphalt pavement design. The aims of the present study is to modify moisture resistance of the asphalt concrete by utilizing ceramic fibers as a type of reinforcement incorporated with hydrated lime. For this purpose, a penetration grade of the asphalt cement (40-50) was utilized as a binder with an aggregate of the maximum nominal size of 12.5mm and mineral filler limestone dust. A series of specimens has been fabricated by utilizing 0.50, 1.0, 1.5, and 2.0 percentages of ceramic fibers. For each of these contents, another subsequent group of specimens with hydrated lime with 0.0, 1.0, 1.5, and 2.0 percentages were moulded. For the additi

... Show More
Crossref (1)
Crossref
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
The Effect of Type of Fiber in Density and Splitting Tensile Strength of SIFCON
...Show More Authors

SIFCON is characterized as a construction material of high ductility and very high strength. It is suitable for concrete structures used for special applications. However, the density of SIFCON is much higher than that of Fiber Reinforced Concrete (FRC) due to the need for a large amount of high-density steel fibers. This work examines the split tensile behavior of modified weight slurry infiltrated fiber concrete utilizing a mixture of two types of fibers, steel fiber, and polyolefin fiber. For the investigation, 30 cylinders and 15 cubes were poured. The used volume fraction (V.F) is (6 %) and the use of five series once as each type separately and once a hybrid in proportions of 2/3 polyolefin with 1/3 steel fiber and

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Aug 05 2025
Journal Name
Optik
Optimization of plasmonic Al/TiO₂ thin film characteristics via scanning pulsed fiber laser deposition
...Show More Authors

The deposition method of perovskite solar cell layers significantly impacts device functionality and the achievement of industrial goals. Aluminum (Al) nanoparticles with rutile titanium oxide (TiO2) nanoparticle thin films are fabricated on Fluorine Tin Oxide (FTO) glass substrates by nanosecond pulsed fiber laser deposition (PLD) to be used as a plasmonic electron transport layer (ETL) in perovskite solar cell (PSC). The effect of various pulsed fiber laser parameters on the structural, optical, and surface morphology on Al/TiO2 films is extensively examined utilizing a variety of measurement techniques; X-ray diffraction (XRD), Ultraviolet–visible (UV–Vis) spectroscopy, Field emission scanning electron microscopy (FE-SEM) and Atomic

... Show More