Geomorphology is concerned with the topographic units that make up the Earth's surface. These take many forms, such as mountains and rivers, and include many dangers such as landslides, landslides and erosion. Many studies appeared in this field to analyze its effects and risks resulting from it, including urban studies, to determine the trends of optimal urban expansion and its geomorphological interactions. The results showed that the city of Kut originated and expanded near the course of the Tigris River and its branches, and it suffers from unbalanced urban expansion, due to the high rate of population growth, and overcrowding in housing units with the growth of urban land uses in it, which prompted the city to extend horizontally and vertically and use land New at the expense of the lands and areas surrounding the city of Kut. To do so, this research dealt with determining the trends of current and future urban expansion of the city of Kut, and the detection of geomorphological controls that determine that expansion through the geographical characteristics of the city. The research relied on the descriptive, analytical, historical and quantitative method, collecting data through field studies and relevant government institutions, and using satellite visuals and GIS techniques in analyzing data and drawing conclusions. It has become clear from the research that there are natural determinants represented (rivers, marshes, Sabkha, natural resources) and they outweigh the effect of human determinants represented (orchards and agricultural lands, industrial areas, government and military structures, landfills, quarries and brick factories), which is due to poor planning. The override on the city’s base map scheme, and therefore these determinants restrict that expansion or increase its cost, determine its direction and reduce the city’s absorptive capacity. As for the best available directions for the future urban expansion of the city, they are towards the northwest along the (Kut-Baghdad) road, and towards the southeast along the (Kut-Nasiriya) road, because there are no geomorphic or human determinants that impede the spatial expansion of the city towards it. Thus, defining and measuring the trend of urban expansion will be faced with the various natural-geomorphological determinants, which must be considered among the priorities of any strategic plan for developing urban areas, and protecting them from geomorphological risks.
Fiber Reinforced Polymer (FRP) bars are anisotropic in nature and have high tensile strength in the fiber direction. The use of High-Strength Concrete (HSC) allows for better use of the high-strength properties of FRP bars. The mechanical properties of FRP bars can yield to large crack widths and deflections. As a result, the design of concrete elements reinforced with FRP materials is often governed by the Serviceability Limit States (SLS). This study investigates the short-term serviceability behavior of FRP RC I-beams. Eight RC I-beams reinforced with carbon-FRP (CFRP) and four steel RC I-beams, for comparison purposes, were tested under two-point loading.
Deformations on the concrete and crack widths and spacing are measured and
In this paper, the dynamic behaviour of the stage-structure prey-predator fractional-order derivative system is considered and discussed. In this model, the Crowley–Martin functional response describes the interaction between mature preys with a predator. e existence, uniqueness, non-negativity, and the boundedness of solutions are proved. All possible equilibrium points of this system are investigated. e sucient conditions of local stability of equilibrium points for the considered system are determined. Finally, numerical simulation results are carried out to conrm the theoretical results.
Nuclear emission rates for nucleon-induced reactions are theoretically calculated based on the one-component exciton model that uses state density with non-Equidistance Spacing Model (non-ESM). Fair comparison is made from different state density values that assumed various degrees of approximation formulae, beside the zeroth-order formula corresponding to the ESM. Calculations were made for 96Mo nucleus subjected to (N,N) reaction at Emax=50 MeV. The results showed that the non-ESM treatment for the state density will significantly improve the emission rates calculated for various exciton configurations. Three terms might suffice a proper calculation, but the results kept changing even for ten terms. However, five terms is found to give
... Show MoreThere is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP
... Show MoreIncorporating the LiDAR sensor in the most recent Apple devices represents a substantial development in 3D mapping technology. Meanwhile, Apple's Lidar is still a new sensor. Therefore, this article reviews the potential uses of the Apple Lidar sensor in various fields, including engineering and construction, focusing on indoor and outdoor as-built 3D mapping and cultural heritage conservation. The affordable cost and shorter observation times compared to traditional surveying and other remote sensing techniques make the Apple Lidar an attractive choice among scholars and professionals. This article highlights the need for continued research on the Apple LiDAR sensor technology while discussing its specifications and limitations. A
... Show MoreThe present study focuses on synthesizing solar selective absorber thin films, combining nanostructured, binary transition metal spinel features and a composite oxide of Co and Ni. Single-layered designs of crystalline spinel-type oxides using a facile, easy and relatively cost-effective wet chemical spray pyrolysis method were prepared with a crystalline structure of MxCo3−xO4. The role of the annealing temperature on the solar selective performance of nickel-cobalt oxide thin films (∼725 ± 20 nm thick) was investigated. XRD analysis confirmed the formation of high crystalline quality thin films with a crystallite si