Preferred Language
Articles
/
E_rAsJkBMF18lwyZ4c0i
Oxidation desulfurization of model oil using carbon composite derived from peach stone waste
...Show More Authors

     In this study, oxidative desulfurization of dibenzothiophene (DBT) with H2O2 as an oxidant was studied, whereas the catalyst used was zirconium oxide supported on Activated carbon (AC). Zirconium oxide (ZrO2) was impregnated over prepared activated carbon (AC) and characterized by various techniques such as XRD, FTIR, BET, SEM, and EDX. This composite was used as a heterogeneous catalyst for oxidation desulfurization of simulated oil. The results of this study showed that ZrO2/AC composite exhibited significant catalytic activity and stability, effectively lowering sulfur content under mild conditions. Factors such as reaction temperature (30, 40, 50, 60°C), time (5, 10, 15,20,30,60, 80 100 min), catalyst dose (0.3, 0.5, 0.7, 0.9 g) and initial concentration of dibenzothiophene (DBT) (20,40, 60, 80, 100, 200, 300 ppm) was used to achieved maximum efficiency. 10 ml of H2O2 /100 ml of simulated oil was used as an oxidizing agent. It was found that an increase in all the above variables led to an increase in desulfurization efficiency, except for an increase in initial DBT concentration, which led to a decrease in removal efficiency. The maximum removal efficiency of sulfur content was 92.22%, which was achieved at 60 °C and 0.9g of composite /100 ml of simulated oil at equilibrium time 100 min and 100ppm initial concentration of DBT. Finally, the reaction kinetics matched the pseudo-second order rate model, with an activation energy of 36.665 KJ/mol.

Crossref
View Publication
Publication Date
Mon Jul 29 2024
Journal Name
Earth And Environmental Science
Refinement of Internal-Combustion Engine Oil Properties Via Magnetic Flux
...Show More Authors

To verify the influence of magnetic flux on the characteristics of SAE 10W-30 gasoline engine oil when the engine oil is exposed to different magnetic fluxes 0, 6, 9, and 13 Volt. The following oil characteristics were measured: viscosity at 40 and 100 °C, and total acid number (TAN) mg KOH/g. The research was carried out in a completely randomized design with three replications for each treatment under the 5% probability level to compare the means of the treatments. The results of the experiment showed that there were significant differences in the studied properties when the engine oil was exposed to the above magnetic fluxes and, inversely, especially the magnetic flux of 13 Volt, which led to a decrease in the viscosity of the oils at

... Show More
Preview PDF
Publication Date
Tue Oct 31 2023
Journal Name
Iraqi Geological Journal
Evaluating Petrophysical Properties of Sa'di Reservoir in Halfaya Oil Field
...Show More Authors

The petrophysical characteristics of five wells drilled into the Sa'di Formation in the Halfaya oil field were evaluated using IP software to determine a reservoir and explore hydrocarbon reserve zones. The lithology was evaluated using the M-N cross-plot method. The diagram showed that the Sa'di Formation was mainly composed of calcite (represented by the limestone region) is the main mineral in the Sa′di Reservoir. Using a density-neutron cross plot to identify the lithology showed that the formation mainly consists of limestone with minor shale. Gamma-ray logs were employed to calculate the shale quantity in each well. The porosity at weak hole intervals was calculated using a sonic log and neutron-density log at the reservoir

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Sep 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Petrophysical Properties of Nahr Umar Formation in Nasiriya Oil Field
...Show More Authors

   Petrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Mar 01 1997
Journal Name
Polymer-plastics Technology And Engineering
Feasibility of Dynamic Acid Corrosion Control in Oil Well Tubing
...Show More Authors

View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Influence of Nanofluid Flooding on Oil Displacement in Porous Media
...Show More Authors

Hydrocarbon displacement at the pore scale is mainly controlled by the wetness properties of the porous media. Consequently, several techniques including nanofluid flooding were implemented to manipulate the wetting behavior of the pore space in oil reservoirs. This study thus focuses on monitoring the displacement of oil from artificial glass porous media, as a representative for sandstone reservoirs, before and after nanofluid flooding. Experiments were conducted at various temperatures (25 – 50° C), nanoparticles concentrations (0.001 – 0.05 wt% SiO2 NPs), salinity (0.1 – 2 wt% NaCl), and flooding time. Images were taken via a high-resolution microscopic camera and analyzed to investigate the displacement of the oil at dif

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Mon Jul 01 2024
Journal Name
Iop Conference Series: Earth And Environmental Science
Refinement of Internal-Combustion Engine Oil Properties Via Magnetic Flux
...Show More Authors
Abstract<p>To verify the influence of magnetic flux on the characteristics of SAE 10W-30 gasoline engine oil when the engine oil is exposed to different magnetic fluxes 0, 6, 9, and 13 Volt. The following oil characteristics were measured: viscosity at 40 and 100 °C, and total acid number (TAN) mg KOH/g. The research was carried out in a completely randomized design with three replications for each treatment under the 5% probability level to compare the means of the treatments. The results of the experiment showed that there were significant differences in the studied properties when the engine oil was exposed to the above magnetic fluxes and, inversely, especially the magnetic flux of 13 Volt,</p> ... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Upgrading of Sharqy Baghdad Heavy Oil via N-Hexane Solvent
...Show More Authors

   Asphaltenes are a solubility class described as a component of crude oil with undesired characteristics. In this study, Sharqy Baghdad heavy oil upgrading was achieved utilizing the solvent deasphalting approach as asphaltenes are insoluble in paraffinic solvents; they may be removed from heavy crude oil by adding N-Hexane as a solvent to create deasphalted oil (DAO)of higher quality. This method is known as Solvent De-asphalting (SDA). Different effects have been assessed for the SDA process, such as solvent to oil ratio (4-16/1 ml/g), the extraction temperature (23 ºC) room temperature and (68 ºC) reflux temperature at (0.5 h mixing time with 400 rpm mixing speed). The best solvent deasphalting results were obtained at room temp

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Influence of Nanofluid Flooding on Oil Displacement in Porous Media
...Show More Authors

Hydrocarbon displacement at the pore scale is mainly controlled by the wetness properties of the porous media. Consequently, several techniques including nanofluid flooding were implemented to manipulate the wetting behavior of the pore space in oil reservoirs. This study thus focuses on monitoring the displacement of oil from artificial glass porous media, as a representative for sandstone reservoirs, before and after nanofluid flooding. Experiments were conducted at various temperatures (25 – 50° C), nanoparticles concentrations (0.001 – 0.05 wt% SiO2 NPs), salinity (0.1 – 2 wt% NaCl), and flooding time. Images were taken via a high-resolution microscopic camera and analyzed to investigate the displacement of the oil

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Jan 30 2020
Journal Name
Journal Of Engineering
The Optimum Reservoir Performance of Nahr Umr/Ratawi Oil Field
...Show More Authors

Reservoir study has been developed in order to get a full interesting of the Nahr Umr formation in Ratawi oil field. Oil in place has been calculated for Nahr Umr which was 2981.37 MM BBL. Several runs have been performed to get matching between measured and calculated of oil production data and well test pressure. In order to get the optimum performance of Nahr Umr many strategies have been proposed in this study where vertical and horizontal wells were involved in addition to different production rates. The reservoir was first assumed to be developed with vertical wells only using production rate of (80000–125000) STB/day. The reservoir is also proposed to produce using horizontal wells besides vertical wells with production rat

... Show More
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Fuel
Wettability of nanofluid-modified oil-wet calcite at reservoir conditions
...Show More Authors

Nanofluids, liquid suspensions of nanoparticles (Np), are an effective agent to alter the wettability of oil-wet reservoirs to water-wet thus promoting hydrocarbon recovery. It can also have an application to more efficient carbon storage. We present a series of contact angle (θ) investigations on initially oil-wet calcite surfaces to quantify the performance of hydrophilic silica nanoparticles for wettability alteration. These tests are conducted at typical in-situ high pressure (CO2), temperature and salinity conditions. A high pressure–temperature (P/T) optical cell with a regulated tilted surface was used to measure the advancing and receding contact angles at the desired conditions. The results showed that silica nanofluids can alte

... Show More
Scopus (141)
Crossref (133)
Scopus Clarivate Crossref