This study assessed the advantage of using earthworms in combination with punch waste and nutrients in remediating drill cuttings contaminated with hydrocarbons. Analyses were performed on day 0, 7, 14, 21, and 28 of the experiment. Two hydrocarbon concentrations were used (20000 mg/kg and 40000 mg/kg) for three groups of earthworms number which were five, ten and twenty earthworms. After 28 days, the total petroleum hydrocarbon (TPH) concentration (20000 mg/kg) was reduced to 13200 mg/kg, 9800 mg/kg, and 6300 mg/kg in treatments with five, ten and twenty earthworms respectively. Also, TPH concentration (40000 mg/kg) was reduced to 22000 mg/kg, 10100 mg/kg, and 4200 mg/kg in treatments with the above number of earthworms respectively. The present study revealed that the trend of degradation was observed to increase significantly with an increase in Earthworms number and with an increase in number of tested days. The results of this study have shown that TPH with certain concentrations can be reduced to acceptable levels by using the selected earthworms named Allolobophora. Also the study results revealed that the present bioremediation can be considered an additional option to deal with the local petroleum contaminated sites.
Drug solubility and dissolution remain a significant challenge in pharmaceutical formulations. This study aimed to formulate and evaluate repanglinide (RPG) nanosuspension-based buccal fast-dissolving films (BDFs) for dissolution enhancement. RPG nanosuspension was prepared by the antisolvent-precipitation method using multiple hydrophilic polymers, including soluplus®, polyvinyl alcohol, polyvinyl pyrrolidine, poloxamers, and hydroxyl propyl methyl cellulose. The nanosuspension was then directly loaded into BDFs using the solvent casting technique. Twelve formulas were prepared with a particle size range of 81.6-1389 nm and PDI 0.002-1 for the different polymers. Nanosuspensions prepared with soluplus showed a favored mean particle size o
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreRobots have become an essential part of modern industries in welding departments to increase the accuracy and rate of production. The intelligent detection of welding line edges to start the weld in a proper position is very important. This work introduces a new approach using image processing to detect welding lines by tracking the edges of plates according to the required speed by three degrees of a freedom robotic arm. The two different algorithms achieved in the developed approach are the edge detection and top-hat transformation. An adaptive neuro-fuzzy inference system ANFIS was used to choose the best forward and inverse kinematics of the robot. MIG welding at the end-effector was applied as a tool in this system, and the wel
... Show MoreThe Internet of Things (IoT) is an information network that connects gadgets and sensors to allow new autonomous tasks. The Industrial Internet of Things (IIoT) refers to the integration of IoT with industrial applications. Some vital infrastructures, such as water delivery networks, use IIoT. The scattered topology of IIoT and resource limits of edge computing provide new difficulties to traditional data storage, transport, and security protection with the rapid expansion of the IIoT. In this paper, a recovery mechanism to recover the edge network failure is proposed by considering repair cost and computational demands. The NP-hard problem was divided into interdependent major and minor problems that could be solved in polynomial t
... Show MoreRecent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T
... Show MoreCryptography is a major concern in communication systems. IoE technology is a new trend of smart systems based on various constrained devices. Lightweight cryptographic algorithms are mainly solved the most security concern of constrained devices and IoE systems. On the other hand, most lightweight algorithms are suffering from the trade-off between complexity and performance. Moreover, the strength of the cryptosystems, including the speed of the algorithm and the complexity of the system against the cryptanalysis. A chaotic system is based on nonlinear dynamic equations that are sensitive to initial conditions and produce high randomness which is a good choice for cryptosystems. In this work, we proposed a new five-dimensional of a chaoti
... Show MoreAbstract
Machining residual stresses correlate very closely with the cutting parameters and the tool geometries. This research work aims to investigate the effect of cutting speed, feed rate and depth of cut on the surface residual stress of steel AISI 1045 after face milling operation. After each milling test, the residual stress on the surface of the workpiece was measured by using X-ray diffraction technique. Design of Experiment (DOE) software was employed using the response surface methodology (RSM) technique with a central composite rotatable design to build a mathematical model to determine the relationship between the input variables and the response. The results showed that both
... Show MoreThe green method was chosen for the preparation of nano iron oxide due to its simplicity, ease of preparation, and purity, compared to other methods. Nano iron oxide was made using a substance that causes precipitation and a coating from the alcoholic extract of orange leaves from Iraq. It was examined structurally and spectrally using several techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, field-emission scanning microscopy (FESEM), energy-dispersive X-ray spectroscopy, and UV-Vis spectroscopy. The diagnosis proved that the nano iron oxide was successfully prepared in a spherical form and with an average size of 71.1 nm. The nano iron oxide particles were tested for their ability to remove crystal
... Show MoreBackground: Multi- drug resistant (MDR) Staphylococcus aureus infections have become a major public health concern in both hospital and community settings.Objective: to investigate the antibacterial activity of T. Foenum- groecum essential oil against skin infection with S. aureus and to study probable synergistic activity in combination with Clindamycin.Type of the study: Cross-sectional study.
Methods: Antibacterial activity of T. Foenum- groecum essential oil extract (1.2gm/100 µl) was investigated in multi- drug resistance (MDR) Staphylococcus aureus specimen isolated from patients with skin infection in Baghdad. T. Foenum- groecum use externally for cellulites and skin inflammation due to the presence of diosgenin .fast liq
... Show MoreEmpirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show More