This study assessed the advantage of using earthworms in combination with punch waste and nutrients in remediating drill cuttings contaminated with hydrocarbons. Analyses were performed on day 0, 7, 14, 21, and 28 of the experiment. Two hydrocarbon concentrations were used (20000 mg/kg and 40000 mg/kg) for three groups of earthworms number which were five, ten and twenty earthworms. After 28 days, the total petroleum hydrocarbon (TPH) concentration (20000 mg/kg) was reduced to 13200 mg/kg, 9800 mg/kg, and 6300 mg/kg in treatments with five, ten and twenty earthworms respectively. Also, TPH concentration (40000 mg/kg) was reduced to 22000 mg/kg, 10100 mg/kg, and 4200 mg/kg in treatments with the above number of earthworms respectively. The present study revealed that the trend of degradation was observed to increase significantly with an increase in Earthworms number and with an increase in number of tested days. The results of this study have shown that TPH with certain concentrations can be reduced to acceptable levels by using the selected earthworms named Allolobophora. Also the study results revealed that the present bioremediation can be considered an additional option to deal with the local petroleum contaminated sites.
In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
This paper demonstrates the design of an algorithm to represent the design stages of fixturing system that serve in increasing the flexibility and automation of fixturing system planning for uniform polyhedral part. This system requires building a manufacturing feature recognition algorithm to present or describe inputs such as (configuration of workpiece) and built database system to represents (production plan and fixturing system exiting) to this algorithm. Also knowledge – base system was building or developed to find the best fixturing analysis (workpiece setup, constraints of workpiece and arrangement the contact on this workpiece) to workpiece.
Electronic Health Record (EHR) systems are used as an efficient and effective method of exchanging patients’ health information with doctors and other key stakeholders in the health sector to obtain improved patient treatment decisions and diagnoses. As a result, questions regarding the security of sensitive user data are highlighted. To encourage people to move their sensitive health records to cloud networks, a secure authentication and access control mechanism that protects users’ data should be established. Furthermore, authentication and access control schemes are essential in the protection of health data, as numerous responsibilities exist to ensure security and privacy in a network. So, the main goal of our s
... Show MoreIn this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show MoreThis paper reports on the laser emission properties of the BBQ dye in poly (methyl meth-acrylate)(PMMA). This host material combines the advantages of an organic environment for dye with the thermoptical mechanical properties of an organic dye. A BBQ dye solid solution in PMMA polymer. A nitrogen laser in untuned laser cavity has pumped thin films. We developed the concentration and the thickness to get high efficiency. The laser efficiency had been increased from 7% at thickness 1.5 m to 16.5% at thickness 3.5m, and from 1% to 10% when concentration increased from 1x10-5M to 1x10-3 M
Photonic Crystal Fiber (PCF) based on the Surface Plasmon Resonance (SPR) effect has been proposed to detect polluted water samples. The sensing characteristics are illustrated using the finite element method. The right hole of the right side of PCF core has been coated with chemically stable gold material to achieve the practical sensing approach. The performance parameter of the proposed sensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of refractive index of analyte. In the sensing range of 1.33 to 1.3624, maximum sensitivities of 1360.2 nm ∕ RIU and 184 RIU−1 are achieved with the high sensor resolutions of 7
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreThe flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce cha
... Show More