Objective. Infection with Coxsackie virus. This virus that damages pancreatic cells, has long been linked to the onset of insulin-dependent diabetic mellitus (IDDM). Pro-inflammatory cytokines can be produced as a result of this illness. Tumor necrosis factor-a is one of these pro-inflammatory cytokines. Materials and Methods. Blood sample were collected from 180 Iraqi participants. Ninety of them is type 1 diabetic patients and other 90 is healthy control .both groups were tested for the incidence of Coxsackie virus B IgG. So the patients groups is divided to two groups according to sero positivity of CVB-IgG .all 180 patients tested to measure of level of TNF-α. Results. The Results showed increasing in levels of TNF-α in CBV positive Type 1 Diabetes mellitus was (34.85 ± 11.00 pg/ml). The level of this interleukin in Type 1 Diabetes mellitus negative to that virus was (26.16 ± 7.79 pg/ml). While the results of this interleukin in control group was (13.82 ± 3.93 pg/ml) with p-value 0. Conclusion. The concentration of TNF-α, according to results, has been shown to be associated with type 1 diabetes mellitus patients infected with CVB-IgG and diabetic patients without CVB.
Objective(s): To evaluate nurses' practices who work in respiratory intensive care units to control the
complications of patients admitted at this unit and determine the relationship between nurses' sociodemographic
characteristics and their practices.
Methodology: A descriptive study was carried out at Respiratory Care Unit at Baghdad teaching hospitals that
started from February 22th, 2013 to August 30th, 2013. A purposive "non-probability" sample of (70) nurses who
work in Respiratory Care Unit was selected from Baghdad teaching hospitals. The data were collected through the
use of constructed questionnaire that consists of two parts; (l) Demographic data form that consists of 7items and
(2) nurses' practice form
Objective(s) : This study aimed at evaluating the seroprevalence of anti -HCV and studying the
correlation between hemophilia and risk factors for acquiring HCV such as age , marital status &
occupation among hemophilic patients .
Methodology : 210 hemophilic patients in children welfare teaching hospital/medical city/Baghdad–Iraq
(hemophilia center) were investigated using prepared questionnaire and tested for HCV infection, those
were measuring patient’s age, hemophilia types and severity, marital status, residency and history of
previous HCV infection .
Results : Most hemophilic patients were hemophilia A at severe , hemophilia was at age group 20 – 29
years , the majority of patients were unmarried a
Objective The incidence of rhythm and conduction abnormalities during acute myocardial infarction may approaches 100%; most are seen during the pre-hospital and coronary care unit phases, leading to deleterious effect on morbidity and mortality, this study conducted to find important persistent dysrhythmia found during CCU admission of acute myocardial infarction patients.Method A retrospective observational study of 553 patients who were admitted to the Coronary Care Unit of Alkindy Teaching Hospital during Year 2011 with diagnosis of acute myocardial infarction, Information and data extracted from case sheets and associated 12 leads daily ECGsResults only 25% of our patients had dysrhythmia on examining the present 12 leads ECGs , the
... Show MoreA streptococci has recognized as Streptococcus spp., associate with acute pharyngitis. S. pyogenes infection Has detected in the Hospital and Health Center in Tikrit city. Throat swabs sample has obtained and cultured on a sheep blood agar plate. Identification of S. pyogenes was performed by using the VITEK 2 automatic system. It detected of 50 samples from children included 25 were positive for S. pyogenes infection. were aged 10-35 years old and included 30 male and 20 female. . While 25 sample Negative of S. pyogenes infection (The control group included 25 clinically healthy children without S. pyogenes infection matched for age and sex with cases pateints). No significa
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Lymphoma is a cancer arising from B or T lymphocytes that are central immune system components. It is one of the three most common cancers encountered in the canine; lymphoma affects middle-aged to older dogs and usually stems from lymphatic tissues, such as lymph nodes, lymphoid tissue, or spleen. Despite the advance in the management of canine lymphoma, a better understanding of the subtype and tumor aggressiveness is still crucial for improved clinical diagnosis to differentiate malignancy from hyperplastic conditions and to improve decision-making around treating and what treatment type to use. This study aimed to evaluate a potential novel biomarker related to iron metabolism,
... Show MoreEchocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.
Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreSediment accumulated in sewers is a major concern source as it induces numerous operational and environmental problems. For instance, during wet weather flow, the re-suspension of this sediment accompanied by the combined sewer overflow may cause huge pollutant load to the receiving water body. The characteristics of the sewer sediment are important as it shapes its behaviour and determines the extent of the pollution load. In this paper, an investigation of sewer sediment and its characterization is done for a case study in Baghdad city. Sediment depth covers more than 50% of the sewer cross-sectional area; several operational causes are comprised to cause this huge depths of sediment depositions. The testing and analysis of the s
... Show More