Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin’s method), The nonparametric model is estimated by using kernel smoothing (Nadaraya Watson), K-Nearest Neighbor smoothing and Median smoothing. The Flower Pollination algorithms were employed and structured in building the ecological model and estimating the semi-parametric regression function with measurement errors in the explanatory and dependent variables, then compare the models to choose the best model used in the environmental scope measurement errors, where the comparison between the models is done using the mean square error (MSE).
In the last few years, the Internet of Things (IoT) is gaining remarkable attention in both academic and industrial worlds. The main goal of the IoT is laying on describing everyday objects with different capabilities in an interconnected fashion to the Internet to share resources and to carry out the assigned tasks. Most of the IoT objects are heterogeneous in terms of the amount of energy, processing ability, memory storage, etc. However, one of the most important challenges facing the IoT networks is the energy-efficient task allocation. An efficient task allocation protocol in the IoT network should ensure the fair and efficient distribution of resources for all objects to collaborate dynamically with limited energy. The canonic
... Show MoreAbstract
The increasing of some traded Agricultural crops prices coincide with the increasing of crude oil prices in global market since the beginning of 21st century which indicate the possibility of short run and long run causality relation between the imported economic variables. The study aims to analysis the causality effects between some of Agricultural crops prices imported by Iraq and the prices of crude oil and Iraq dinar exchange rate in global markets for period (2004:1 -2016:4) theory for developing the adequate price and economic police for Iraqi economic sector. The results show the existence of short- run and long- run between the eco
... Show MoreThis study included 46 patients with liver hydatid cyst diagnosed clinically and surgically, control group consist of 22 were naïve from infection had been confirmed by specialist. The patients were divided according to the size of the cysts into more and less than 5 cm diameter size, were 33 and 13 respectively. Also it divided into primary and secondary hydatid cyst infection which were 30 and 16 respectively. The role of immunological response against hydatid cyst parasite, showed a significant increased in humoral immunoglobulins (IgG, IgA, IgM and IgE) which were significantly higher in the hydatid cyst infection than control. Also significant increased in immunoglobulins in secondary infection than primary infection, beside significa
... Show MoreThis research deals with a shrinking method concernes with the principal components similar to that one which used in the multiple regression “Least Absolute Shrinkage and Selection: LASS”. The goal here is to make an uncorrelated linear combinations from only a subset of explanatory variables that may have a multicollinearity problem instead taking the whole number say, (K) of them. This shrinkage will force some coefficients to equal zero, after making some restriction on them by some "tuning parameter" say, (t) which balances the bias and variance amount from side, and doesn't exceed the acceptable percent explained variance of these components. This had been shown by MSE criterion in the regression case and the percent explained v
... Show MoreThis paper presents a grey model GM(1,1) of the first rank and a variable one and is the basis of the grey system theory , This research dealt properties of grey model and a set of methods to estimate parameters of the grey model GM(1,1) is the least square Method (LS) , weighted least square method (WLS), total least square method (TLS) and gradient descent method (DS). These methods were compared based on two types of standards: Mean square error (MSE), mean absolute percentage error (MAPE), and after comparison using simulation the best method was applied to real data represented by the rate of consumption of the two types of oils a Heavy fuel (HFO) and diesel fuel (D.O) and has been applied several tests to
... Show MoreIn present study, the technique was used, including nuclear track detector type (CR-39), for appreciative concentrations uranium and radon in soil samples from Baghdad University Campus-AL-Jadiriyah utilizing a prolonged -term with a solid-state nuclear path sensor, a technique for charged particles has been developed., the radon concentrations, effective dose rate and uranium concentrations have measured in soil samples. Eight various venues from soil Baghdad University Campus have appointed. The results indicated variant values about uranium and radon concentrations, the average value for radon gas, effective dose rate and uranium concentrations was found to be 281.59 Bq/cm3, 7.09 mSv/y and 0.01 Bq/mm-2 respectively. All results a
... Show Moreيعد التقطيع الصوري من الاهداف الرئيسة والضرورية في المعالجات الصورية للصور الرقمية، فهو يسعى الى تجزئة الصور المدروسة الى مناطق متعددة اكثر نفعاً تلخص فيها المناطق ذات الافادة لصور الاقمار الصناعية، وهي صور متعددة الاطياف ومجهزة من الاقمار الصناعية باستخدام مبدأ الاستشعار عن بعد والذي اصبح من المفاهيم المهمة التي تُعتمد تطبيقاته في اغلب ضروريات الحياة اليومية، وخاصة بعد التطورات المتسارعة التي شهد
... Show MoreSegmented regression consists of several sections separated by different points of membership, showing the heterogeneity arising from the process of separating the segments within the research sample. This research is concerned with estimating the location of the change point between segments and estimating model parameters, and proposing a robust estimation method and compare it with some other methods that used in the segmented regression. One of the traditional methods (Muggeo method) has been used to find the maximum likelihood estimator in an iterative approach for the model and the change point as well. Moreover, a robust estimation method (IRW method) has used which depends on the use of the robust M-estimator technique in
... Show More