The approach of green synthesis of bio-sorbent has become simple alternatives to chemical synths as they use for example plant extracts, plus green synthesis outperforms chemical methods because it is environmentally friendly besides has wide applications in environmental remediation. This paper investigates the removal of ciprofloxacin (CIP) using green tea nano zero-valent iron (GT-NZVI) in an aqueous solution. The synthesized GT-NZVI was categorized using SEM, AFM, BET, FTIR, and Zeta potentials techniques. The spherical nanoparticles were found to be nano zero-valent, with an average size of 85 nm and a surface area of 2.19m2/g. The results showed that the removal efficiency of ciprofloxacin depends on the initial pH (2.5-10), CIP concentration (2 -15 mg/L), temperature (20 -50°C), time (0-180 min), and GT-NZVI dose (0.1-1 g/L). Batch experiments found that 100% of 0.01 mg/L CIP was removed within 120 min with an initial ratio (w/w) of 1:50 (CIP: GT-NZVI) at optimum pH10. Kinetic models for adsorption and mechanism removal of ciprofloxacin were also examined, and the kinetic analysis showed that adsorption is a physical adsorption mechanism with 0.84606 kJ/mol activation energy. The kinetic removal process is the preferred pseudo-first-order model after a physical diffusion-controlled reaction, due to the low energy of activation of 17.66 kJ/mol. Adsorption isotherms information from Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models were followed, and the thermodynamic parameter ∆G0 values were -0.3671, -07494, - 2.2490 and-2.3005 kJ/mol at 20, 30, 40, and 50°C, respectively. The value of ΔH0 and ΔS0 were 21.067 kJ/mol and 0.073 kJ/mol.K, which indicated favourable and endothermic sorption. UV-analysis was applied to identify the presence and concentration of CIP in aqueous media.
In this study, novel Schiff base complexes with Zn(II) and Co(II) ions were successfully synthesized. The malonic acid dihydrazide was converted into the Schiff base ligand by combining it with 1-hydroxy-2-naphthaldehyde, and the last step required reacting it with the appropriate metal(II) chloride to produce pure target complexes. The generated complexes were thoroughly characterized using FTIR, 1H-NMR, 13C-NMR, GC-mass, and UV-Vis spectroscopies. In order to photo-stabilize polystyrene (PS) and reduce the photodegradation of its polymeric chains, these chemicals have been used in this work. The efficiency of the generated complexes as photo-stabilizers was evaluated using a variety of techniques, including FTIR, weight loss, visc
... Show MoreThe research included preparation of new iron(II) complexes with mixed ligands including benzilazine(BA) and semicarbazone ligands {benzilsemicarbazone- BSCH or benzilbis(semicarba-zone)- BBSCH2 or salicylaldehydesemicarbazone- SSCH2 or benzoinsemicarbazone- B'SCH2}.by classical and microwave methods. The resulted complexes have been characterized using chemical and physical methods. The study suggested that the above ligands form ionic complexes having formulae [Fe(SCHi)(BA)(Cl)m](Cl)2-m {where SCH, BSCH, BBSCH2, SSCH¬2 or B'SCH2 ligands; m=1 or 2}. Hexacoordinated mononuclear complexes have been investigated by this study and having octahedral geometries. The effect of laser ray type visible region have been studied on solid ligands and
... Show MoreExtract from cell culture of medicinal plant like Nigella sativa have been assessed for its cytotoxic properties. Thymol is likely responsible for the theraputic effects of Nigella sativa leaf callus extract. In this short study the inhibitory effect of Nigella sativa leaf callus extract (Thymol) has been studied on Human Lorgnx Epidrmoid Carcinoma (Hep-2) cell line during different exposure period of time (24, 48 and 72 hrs.) using different concentration of the extract (1000, 500, 400, 300, 200 and 100 µg/ml). The optical density of the Hep-2 cells has been readed on 492 nm wave length. Thymol –induced cytotoxicity was (500 µg/ml) which inhibit cell growing compared to the control and this
... Show MoreIron–phthalocyanine (FePc) organic photoconductive detector was fabricated using pulsed laser deposition (PLD) technique to work in ultraviolet (UV) and visible regions. The organic semiconductor material (iron phthalocyanine) was deposited on n-type silicon wafer (Si) substrates at different thicknesses (100, 200 and 300) nm. FePc organic photoconductive detector has been improved by two methods: the first is to manufacture the detector on PSi substrates, and the second is by coating the detector with polyamide–nylon polymer to enhance the photoconductivity of the FePc detector. The current–voltage (I–V) characteristics, responsivity, photocurrent gain, response time and the quantum efficiency of the fabricated photoconduc
... Show MoreIn this paper the process of metal ions extraction (Zn(II) and Cu(II)) was studied in PEG-KCl aqueous two phase system was investigated without using an extracting agent. The experimental runs were performance at constant temperature (25 oC), constant mixing time (30 min), and constant PH of the solution (about 3). The effect of KCl salt concentration (from 10% to 25%), volumetric phase ratio of PEG solution to KCl solution (from 0.5 to 2), and the initial metal ion concentration (from 0.25 ml to 2 ml of 1 gm/L solution) were investigated on the percent extraction of Zn(II) and Cu(II). The results indicated that the percent extraction of metal ions increase with increasing of salt concentration and phase ratio, and slightly de
... Show MoreElectro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu
... Show More
Salmonella is approved as a common foodborne pathogen, causing major health problems throughout the world particularly in low‐ and middle‐income countries. Low-level fluoroquinolone resistance is conferred by both chromosomal and plasmid-encoded resistance, this research was carried out look into the occurrence rate of qnrA,qnrB and qnrS genes in Salmonella enterica serotype Typhi Cipr ofloxacin-resistant insulate from blood samples of patients with typhoid fever. Fifteen Salmonella enterica serotype Typhi isolated previously from patients with typhoid fever were included in this study. All bacterial isolates were confirmed to have ciprofloxacin
... Show MoreTo evaluate the efficiency and effectiveness of three minimally invasive (MI) techniques in removing deep dentin carious lesions. Forty extracted carious molars were treated by conventional rotary excavation (control), chemomechanical caries removal agent (Brix 3000), ultrasonic abrasion (WOODPECKER, GUILIN, China); and Er, Cr: YSGG laser ablation (BIOLASE San Clemente, CA, USA). The assessments include; the excavation time, DIAGNOdent pen, Raman spectroscopy, Vickers microhardness, and scanning electron microscope combined with energy dispersive X-ray spectroscopy (SEM–EDX). The rotary method recorded the shortest excavation time (p < 0.001), Brix 3000 gel was the slowest. DIAGNOdent pen va