The approach of green synthesis of bio-sorbent has become simple alternatives to chemical synths as they use for example plant extracts, plus green synthesis outperforms chemical methods because it is environmentally friendly besides has wide applications in environmental remediation. This paper investigates the removal of ciprofloxacin (CIP) using green tea nano zero-valent iron (GT-NZVI) in an aqueous solution. The synthesized GT-NZVI was categorized using SEM, AFM, BET, FTIR, and Zeta potentials techniques. The spherical nanoparticles were found to be nano zero-valent, with an average size of 85 nm and a surface area of 2.19m2/g. The results showed that the removal efficiency of ciprofloxacin depends on the initial pH (2.5-10), CIP concentration (2 -15 mg/L), temperature (20 -50°C), time (0-180 min), and GT-NZVI dose (0.1-1 g/L). Batch experiments found that 100% of 0.01 mg/L CIP was removed within 120 min with an initial ratio (w/w) of 1:50 (CIP: GT-NZVI) at optimum pH10. Kinetic models for adsorption and mechanism removal of ciprofloxacin were also examined, and the kinetic analysis showed that adsorption is a physical adsorption mechanism with 0.84606 kJ/mol activation energy. The kinetic removal process is the preferred pseudo-first-order model after a physical diffusion-controlled reaction, due to the low energy of activation of 17.66 kJ/mol. Adsorption isotherms information from Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models were followed, and the thermodynamic parameter ∆G0 values were -0.3671, -07494, - 2.2490 and-2.3005 kJ/mol at 20, 30, 40, and 50°C, respectively. The value of ΔH0 and ΔS0 were 21.067 kJ/mol and 0.073 kJ/mol.K, which indicated favourable and endothermic sorption. UV-analysis was applied to identify the presence and concentration of CIP in aqueous media.
This work was conducted to study the treatment of industrial waste water, and more particularly those in the General Company of Electrical Industries.This waste water, has zinc ion with maximum concentration in solution of 90 ppm.
The reuse of such effluent can be made possible via appropriate treatments, such as chemical coagulation, Na2S is used as coagulant.
The parameters that influenced the waste water treatment are: temperature, pH, dose of coagulant and settling time.
It was found that the best condition for zinc removal, within the range of operation used ,were a temperature of 20C a pH value of 13 , a coagulant dose of 15 g Na2S /400ml solution and a settling time of 7 days. Under these conditions the zinc concentrat
In this study two types of extraction solvents were used to extract the undesirable polyaromatics, the first solvent was furfural which was used today in the Iraqi refineries and the second was NMP (N-methyl-2-pyrrolidone).
The studied effecting variables of extraction are extraction temperature ranged from 70 to 110°C and solvent to oil ratio in the range from 1:1 to 4:1.
The results of this investigation show that the viscosity index of mixed-medium lubricating oil fraction increases with increasing extraction temperature and reaches 107.82 for NMP extraction at extraction temperature 110°C and solvent to oil ratio 4:1, while the viscosity index reaches to 101 for furfural extraction at the same extraction temperature and same
Natural Bauxite (BXT) mineral clay was modified with a cationic surfactant (hexadecy ltrimethy lammonium bromide (BXT-HDTMA)) and characterized with different techniques: FTIR spectroscopy, X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The modified and natural bauxite (BXT) were used as adsorbents for the adsorption of 4- Chlorophenol (4-CP) from aqueous solutions. The adsorption study was carried out at different conditions and parameters: contact time, pH value, adsorbent dosage and ionic strength. The adsorption kinetic (described by a pseudo-first order and a pseudo-second order), equilibrium experimental data (analyzed by Langmuir, Freundlich and Temkin isotherm models) and thermodynamic parameters (change in s
... Show MoreThe process for preparing activated carbon (AC) made from tea residue was described in this paper. Investigated were the physicochemical characteristics and adsorption efficiency of the produced AC. Activation with potassium hydroxide (KOH) and carbonization at 350 °C are the two key steps in the manufacturing of AC. The activated carbon was used to adsorb Tetracycline (TC). Different parameters were studied at room temperature to show their effects on the adsorption efficiency of TC. These parameters are the initial concentration of adsorbate TC, solution acidity pH, time of adsorption, and adsorbent dosage. The prepared active carbon was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microsc
... Show MoreThe process for preparing activated carbon (AC) made from tea residue was described in this paper. Investigated were the physicochemical characteristics and adsorption efficiency of the produced AC. Activation with potassium hydroxide (KOH) and carbonization at 350 °C are the two key steps in the manufacturing of AC. The activated carbon was used to adsorb Tetracycline (TC). Different parameters were studied at room temperature to show their effects on the adsorption efficiency of TC. These parameters are the initial concentration of adsorbate TC, solution acidity pH, time of adsorption, and adsorbent dosage. The prepared active carbon was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (
... Show Moreان تصنيع رمال مطلية بأوكسيد الحديد من خلال ترسيب الجزيئات النانوية لذلك الاوكسيد على سطوح الرمال واستخدامها في الحاجز التفاعلي النفاذ لإزالة ايونات الكادميوم والنحاس من المياه الجوفية الملوثة الهدف الرئيسي للدراسة الحالية. تم توصيف بيانات الامتزاز نتيجة تفاعل المادة المازة مع المادة الممتزة قيد الدراسة بشكل جيد من خلال نموذج لانكمير والذي كان أفضل من نموذج فراندلش. لقد وجد ان اعلى قيم لقابلية الامتزاز با
... Show MoreRandom laser gain media is synthesized with different types of dye at the same concentration (1×10-3 M) as an active material and silicon dioxide NPs (silica SiO2) as scatter centers through the Sol-Gel technique. The prepared samples are tested with UV–Vis spectroscopy, Fluorescence Spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive X-ray Diffraction (EDX). The end result demonstrates that doped dyes with silica nanoparticles at a concentration of 0.0016 mol/ml have lower absorbance and higher fluorescence spectra than pure dyes. FESEM scans revealed that the morphology of nanocrystalline silica is clusters of nano-sized spherical particles in the range (25-67) nm. It is con
... Show MoreThere is a real problem when adding micro elements to the soil as a result of fixation, sedimentation, washing or toxicity, and thus economic loss. The plant needs micro elements in very small quantities that do not burn the leaves or cause poisoning to plants, including iron, zinc and boron, as they are essential elements for growth and completing the plant's life cycle, and increase the plant's resistance to diseases and insects, activate enzymes, and form the chlorophyll molecule, in addition to their role in oxidation and reduction processes and vital processes. The use of fertilizers with their modern technology has made the process of activating seeds or foliar nutrition a matter of interest to researchers as a complementary process t
... Show MoreA new application of a combined solvent extraction and two-phase biodegradation processes using two-liquid phase partitioning bioreactor (TLPPB) technique was proposed and developed to enhance the cleanup of high concentration of crude oil from aqueous phase using acclimated mixed culture in an anaerobic environment. Silicone oil was used as the organic extractive phase for being a water-immiscible, biocompatible and non-biodegradable. Acclimation, cell growth of mixed cultures, and biodegradation of crude oil in aqueous samples were experimentally studied at 30±2ºC. Anaerobic biodegradation of crude oil was examined at four different initial concentrations of crude oil including 500, 1000, 2000, and 5000 mg/L. Complete removal of crud
... Show MoreThis work included synthesis of several new polymers of polyacryloyl chloride in two steps . The first step the included the reaction of N-( sub. or un sub. benzoyl and sub. or un sub. acetyl ) amidyl sub. 2,6- diamino -4-methyl-1,3,5-triazine (1-5) by condensation of many substituted acid chlorides with 2,6- diamino -4-methyl-1,3,5-triazine . While the second step included the reaction of polyacryloyl chloride with the produced compounds (1-5) in step (1) in the presence amount triethyl amine (Et3N) to obtain new polyimides (6-10). The prepared compounds were characterized by UV. , FT-IR, and some of them by 1H-NMR and 13C- NMR spectroscopy.