Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreMoment invariants have wide applications in image recognition since they were proposed.
In this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
This paper presents a study of wavelet self-organizing maps (WSOM) for face recognition. The WSOM is a feed forward network that estimates optimized wavelet based for the discrete wavelet transform (DWT) on the basis of the distribution of the input data, where wavelet basis transforms are used as activation function.
Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
This work examines the ability of a special type of smart antenna array known as Switched Active Switched Parasitic Antenna (SASPA) to produce a directive and electronically steerable radiation pattern. The SASPA array consists of antenna elements that are switchable between active and parasitic states by using P-Intrinsic-N (PIN) diodes. The active element is the element that is supplied by the radio frequency while short-circuiting the terminals of an element in the array results in a parasitic element. Due to the strong mutual coupling between the elements, a directional radiation pattern with high gain and a small beamwidth can be produced with only one active element operating at a time. By changing the parasitic state to the active
... Show MoreZernike Moments has been popularly used in many shape-based image retrieval studies due to its powerful shape representation. However its strength and weaknesses have not been clearly highlighted in the previous studies. Thus, its powerful shape representation could not be fully utilized. In this paper, a method to fully capture the shape representation properties of Zernike Moments is implemented and tested on a single object for binary and grey level images. The proposed method works by determining the boundary of the shape object and then resizing the object shape to the boundary of the image. Three case studies were made. Case 1 is the Zernike Moments implementation on the original shape object image. In Case 2, the centroid of the s
... Show MoreDocument analysis of images snapped by camera is a growing challenge. These photos are often poor-quality compound images, composed of various objects and text; this makes automatic analysis complicated. OCR is one of the image processing techniques which is used to perform automatic identification of texts. Existing image processing techniques need to manage many parameters in order to clearly recognize the text in such pictures. Segmentation is regarded one of these essential parameters. This paper discusses the accuracy of segmentation process and its effect over the recognition process. According to the proposed method, the images were firstly filtered using the wiener filter then the active contour algorithm could b
... Show More