The two most popular models inwell-known count regression models are Poisson and negative binomial regression models. Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. Negative binomial regression is similar to regular multiple regression except that the dependent (Y) variables an observed count that follows the negative binomial distribution. This research studies some factors affecting divorce using Poisson and negative binomial regression models. The factors are unemployment rate, inflation and Gini coefficient. The data were taken from the website of the Statistics Center for the years 2002 to 2023.Under the Poisson regression model, each factor has been reported to have an effect on the divorce rate. The two factors of inflation and unemployment had a direct effect and income inequality factors had an inverse effect on the divorce rate. But, under the negative binomial regression model, only inflation has an effect on the number of divorces. It is worth noting that according to the AIC values, the negative binomial regression model has a better fit than the Poisson regression model because its AIC value is lower.
Abstract
The prevention of bankruptcy not only prolongs the economic life of the company and increases its financial performance, but also helps to improve the general economic well-being of the country. Therefore, forecasting the financial shortfall can affect various factors and affect different aspects of the company, including dividends. In this regard, this study examines the prediction of the financial deficit of companies that use the logistic regression method and its impact on the earnings per share of companies listed on the Iraqi Stock Exchange. The time period of the research is from 2015 to 2020, where 33 companies that were accepted in the Iraqi Stock Exchange were selected as a sample, and the res
... Show MoreIt is well-known that the existence of outliers in the data will adversely affect the efficiency of estimation and results of the current study. In this paper four methods will be studied to detect outliers for the multiple linear regression model in two cases : first, in real data; and secondly, after adding the outliers to data and the attempt to detect it. The study is conducted for samples with different sizes, and uses three measures for comparing between these methods . These three measures are : the mask, dumping and standard error of the estimate.
Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame
Reproduction potential and age –specific fecundity of the Mealybug Planococcus citri Risso were studied in the laboratories of Biological control research unit,college of Agriculture –Baghdad university at 25± 2Cº and 60-70% R.H.with 16 light:8 dark photo period.The results showed that the survival ratio began to decline at the 38th day, the average female age was 20 days ,while the average age was 8 days at the first reproduction . Net reproduction rate ( Ro ) was 58.59 female female generation which prove that the population of the mealybug was of the unstable kind , intrinsic rate of increase (rm) was 0.118 femalefemale and the average length period of generation ( T ) was 34.30 days . Many local predators attack the mealybug
... Show MoreBackground: Diabetes mellitus is one of the commonest chronic disorders worldwide with a rapid rise in prevalence. In Iraq its prevalence is high especially in elderly age group. Patients with type 2 diabetes mellitus have higher vulnerability for complications, whether microvascular or macrovascular. Ocular complications are common in diabetes mellitus, and comprise diabetic retinopathy, diabetic papillopathy, cataract, glaucoma, dry eye disease and diabetic keratopathy. Diabetic keratopathy involves endothelial and epithelial tissues of the cornea, leading to persistent epithelial defect, corneal erosion, or corneal ulcers.
Aim of the Study: To compare the mean corneal endothelial cell count between patients wi
... Show MoreIn this research we been estimated the survival function for data suffer from the disturbances and confusion of Iraq Household Socio-Economic Survey: IHSES II 2012 , to data from a five-year age groups follow the distribution of the Generalized Gamma: GG. It had been used two methods for the purposes of estimating and fitting which is the way the Principle of Maximizing Entropy: POME, and method of booting to nonparametric smoothing function for Kernel, to overcome the mathematical problems plaguing integrals contained in this distribution in particular of the integration of the incomplete gamma function, along with the use of traditional way in which is the Maximum Likelihood: ML. Where the comparison on the basis of the method of the Cen
... Show MoreThe logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables. The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.
... Show More