The grasping stability of robotic manipulators is crucial to enable autonomous manipulation in an environment where robots are facing obstacles in their route, where abrupt changes in the robot’s speed are induced. These speed variations will produce forces affecting the robotic manipulator, hence its grasping stability. In this research, the grasping stability of a robotic manipulator that functions according to a frictional self-locking mechanism is investigated statically and dynamically. Both theoretical and experimental results showed that the grasped object size, weight, and its orientation inside the gripper have a great effect on grasping stability. Both the theoretical and experimental results indicated that the grasping object parameters (diameter 25.5 mm–72 mm, weight 25 N–40 N) as well as its orientation inside the gripper influence the grasping stability. The configuration achieved which loaded 40 N, grasped an object of diameter 25.5 mm, and used an initial torque of 0.5N-m with rubber tube material showed optimal grasping stability of 98%. The dynamic test revealed that pulse disturbances (5 mm amplitude, 1.0 s duration) were stable without exceeding two degrees of vertical angular deviation.
Background: The insertion torque (IT) values and implant stability quotient (ISQ) values are the measurements most used to assess primary implant stability. This study aimed to assess the relationship between ISQ values and IT. Materials and methods: This study included 24 patients with a mean (SD) age of 47.9 (13.64) years (range 25-75 years). The patients received 42 dental implants (DI), 33 in the mandible and 9 in the maxilla. The DI were installed using the motorized method with 35 Ncm torque, When DI could not be inserted to the requisite depth by the motorized method, a hand ratchet was used and the IT was recorded as ˃ 35 Ncm. Implant stability was measured utilizing Osstell® ISQ. The secondary stability was measured after 16
... Show MoreThe dialogue considers a method and life curriculum help to solve many problems as well as the best way to build a healthy family setting supports the growth of children and leads to the formation sound, strong and positive character. It also supports the family relationship. many of family members needs may achieve through what prevails among them such as continuing a comprehensive and deep combines word, deed and feeling it enters the body and soul . So each part strengthens by the other part and exchanges effect The deep domestic dialogue opens hearts between parents and children Family increases more loving , intimacy , honesty and happiness. So the domestic dialogue became an urgent necessity in the light of many socia
... Show MoreThere are two main categories of force control schemes: hybrid position-force control and impedance control. However, the former does not take into account the dynamic interaction between the robot’s end effector and the environment. In contrast, impedance control includes regulation and stabilization of robot motion by creating a mathematical relationship between the interaction forces and the reference trajectories. It involves an energetic pair of a flow and an effort, instead of controlling a single position or a force. A mass-spring-damper impedance filter is generally used for safe interaction purposes. Tuning the parameters of the impedance filter is important and, if an unsuitable strategy is used, this can lead to unstabl
... Show More
Here we determined the structure of a cold active family IV esterase (EstN7) cloned
Mechanism of Arbitration in the Stock Exchange Disputes
In the last years, the self-balancing platform has become one of the most common candidates to use in many applications such as flight, biomedical fields, industry. This paper introduced the simulated model of a proposed self-balancing platform that described the self–balancing attitude in (X-axis, Y-axis, or both axis) under the influence of road disturbance. To simulate the self-balanced platform's performance during the tilt, an integration between Solidworks, Simscape, and Simulink toolboxes in MATLAB was used. The platform's dynamic model was drawn in SolidWorks and exported as a STEP file used in the Simscape Multibody environment. The system is controlled using the proportional-integral-derivative (PID) co
... Show More
In the last years, the self-balancing platform has become one of the most common candidates to use in many applications such as flight, biomedical fields, industry. This paper introduced the simulated model of a proposed self-balancing platform that described the self–balancing attitude in (X-axis, Y-axis, or both axis) under the influence of road disturbance. To simulate the self-balanced platform's performance during the tilt, an integration between Solidworks, Simscape, and Simulink toolboxes in MATLAB was used. The platform's dynamic model was drawn in SolidWorks and exported as a STEP file used in the Simscape Multibody environment. The system is controlled using the proportional-integral-deriva
... Show MoreCalculating the Inverse Kinematic (IK) equations is a complex problem due to the nonlinearity of these equations. Choosing the end effector orientation affects the reach of the target location. The Forward Kinematics (FK) of Humanoid Robotic Legs (HRL) is determined by using DenavitHartenberg (DH) method. The HRL has two legs with five Degrees of Freedom (DoF) each. The paper proposes using a Particle Swarm Optimization (PSO) algorithm to optimize the best orientation angle of the end effector of HRL. The selected orientation angle is used to solve the IK equations to reach the target location with minimum error. The performance of the proposed method is measured by six scenarios with different simulated positions of the legs. The proposed
... Show More