This study aims to develop a recommendation engine methodology to enhance the model’s effectiveness and efficiency. The proposed model is commonly used to assign or propose a limited number of developers with the required skills and expertise to address and resolve a bug report. Managing collections within bug repositories is the responsibility of software engineers in addressing specific defects. Identifying the optimal allocation of personnel to activities is challenging when dealing with software defects, which necessitates a substantial workforce of developers. Analyzing new scientific methodologies to enhance comprehension of the results is the purpose of this analysis. Additionally, developer priorities were discussed, especially their utility in allocating a problem to a specific developer. An analysis was conducted on two key areas: first, the development of a model to represent developer prioritizing within the bug repository, and second, the use of hybrid machine learning techniques to select bug reports. Moreover, we use our model to facilitate developer assignment responsibilities. Moreover, we considered the developers’ backgrounds and drew upon their established knowledge and experience when formulating the pertinent objectives. An examination of two individuals’ experiences with software defects and how their actions impacted their rankings as developers in a software project is presented in this study. Researchers are implementing developer categorization techniques, assessing severity, and reopening bugs. A suitable number of bug reports is used to examine the model’s output. A developer’s bug assignment employee has been established, enabling the program to successfully address software maintenance issues with the highest accuracy of 78.38%. Best engine performance was achieved by optimizing and cleansing data, using relevant attributes, and processing it using deep learning.
Secure storage of confidential medical information is critical to healthcare organizations seeking to protect patient's privacy and comply with regulatory requirements. This paper presents a new scheme for secure storage of medical data using Chaskey cryptography and blockchain technology. The system uses Chaskey encryption to ensure integrity and confidentiality of medical data, blockchain technology to provide a scalable and decentralized storage solution. The system also uses Bflow segmentation and vertical segmentation technologies to enhance scalability and manage the stored data. In addition, the system uses smart contracts to enforce access control policies and other security measures. The description of the system detailing and p
... Show MoreIn the present study, MCM-41 was synthesis as a carrier for poorly drugs soluble in water, by the sol-gel technique. Textural and chemical characterizations of MCM-41 were carried out by X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), and thermal gravimetric analysis (TGA). The experimental results were analyzed mesoporous carriers MCM-41. With maximum drug loading efficiency in MCM-41 determined to be 90.74%. The NYS released was prudently studied in simulated body fluid (SBF) pH 7.4 and the results proved that the release of NYS from MCM-41 was (87.79%) after 18 hr. The data of NYS released was found to be submitted a Weibull model with a correlation coefficient of (0.995). The Historical
... Show MoreA perturbed linear system with property of strong observability ensures that there is a sliding mode observer to estimate the unknown form inputs together with states estimation. In the case of the electro-hydraulic system with piston position measured output, the above property is not met. In this paper, the output and its derivatives estimation were used to build a dynamic structure that satisfy the condition of strongly observable. A high order sliding mode observer (HOSMO) was used to estimate both the resulting unknown perturbation term and the output derivatives. Thereafter with one signal from the whole system (piton position), the piston position make tracking to desire one with a simple linear output feedback controller after ca
... Show MoreIn recent years, the demand for air travel has increased and many people have traveled by plane. Most passengers, however, feel stressed due to the limited cabin space. In order to make these passengers more comfortable, a personal air-conditioning system for the entire chair is needed. This is because the human body experiences discomfort from localized heating or cooling, and thus, it is necessary to provide appropriate airflow to each part of the body. In this paper, a personal air-conditioning system, which consists of six vertically installed air-conditioning vents, will be proposed. To clarify the setting temperature of each vent, the airflow around the passenger and the operative temperature of each part of the body is investigate
... Show MoreIn today's digital era, the importance of securing information has reached critical levels. Steganography is one of the methods used for this purpose by hiding sensitive data within other files. This study introduces an approach utilizing a chaotic dynamic system as a random key generator, governing both the selection of hiding locations within an image and the amount of data concealed in each location. The security of the steganography approach is considerably improved by using this random procedure. A 3D dynamic system with nine parameters influencing its behavior was carefully chosen. For each parameter, suitable interval values were determined to guarantee the system's chaotic behavior. Analysis of chaotic performance is given using the
... Show MoreThe continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre
... Show MoreThe earth's surface comprises different kinds of land cover, water resources, and soil, which create environmental factors for varied animals, plants, and humans. Knowing the significant effects of land cover is crucial for long-term development, climate change modeling, and preserving ecosystems. In this research, the Google Earth Engine platform and freely available Landsat imagery were used to investigate the impact of the expansion and degradation in urbanized areas, watersheds, and vegetative cover on the land surface temperature in Baghdad from 2004 to 2021. Land cover indices such as the Normalized Difference Vegetation Index, Normalized Difference Water Index, and Normalized Difference Built-up Index (NDVI, NDWI, an
... Show MoreMany of the proposed methods introduce the perforated fin with the straight direction to improve the thermal performance of the heat sink. The innovative form of the perforated fin (with inclination angles) was considered. Present rectangular pin fins consist of elliptical perforations with two models and two cases. The signum function is used for modeling the opposite and the mutable approach of the heat transfer area. To find the general solution, the degenerate hypergeometric equation was used as a new derivative method and then solved by Kummer's series. Two validation methods (previous work and Ansys 16.0‐Steady State Thermal) are considered. The strong agreement of the validation results (0.3
A novel design and implementation of a cognitive methodology for the on-line auto-tuning robust PID controller in a real heating system is presented in this paper. The aim of the proposed work is to construct a cognitive control methodology that gives optimal control signal to the heating system, which achieve the following objectives: fast and precise search efficiency in finding the on- line optimal PID controller parameters in order to find the optimal output temperature response for the heating system. The cognitive methodology (CM) consists of three engines: breeding engine based Routh-Hurwitz criterion stability, search engine based particle
swarm optimization (PSO) and aggregation knowledge engine based cultural algorithm (CA)