The Na Bop-Pu Sap Pb-Zn ore bodies represent a typical vein-type lead-zinc deposit situated in the Cho Don area and are currently being extracted for their lead and zinc resources. This deposit is characterized by its significant scale and quality and is considered one of the prominent lead-zinc deposits in the Cho Don area. Despite its significance, this deposit has not received adequate attention, resulting in limited knowledge of its geology, mineralization, and deposit genesis model. To address this knowledge gap, our study utilized several methodologies, including field surveying, ore mineral analysis under a microscope, and S and Pb isotopic geochemistry. By employing these approaches, we were able to obtain specific insights into the origin of mineralization and the deposit model. Our field survey suggests that the ore deposits are formed as Pb-Zn-bearing veins along Devonian shale, claystone, and limestone faults. Microscopic analyses of the veins reveal the presence of galena, sphalerite, chalcopyrite, pyrite, arsenopyrite, and pyrrhotite as ore minerals, and quartz, calcite, dolomite, and chalcedony as gangue minerals. Sulfur-isotope values (δ34SCDT) of galena 5.3 to 0.1‰ (average 2.8‰), sphalerite 6.8 to 2.5‰ (average 5.3‰), and pyrite 5.8 to 4.1‰ (average 4.9‰) indicate that the sulfide mineralization may be related to a deep source, possibly originating from magmatic activity in the region and contaminated by carbonate-bearing marine sedimentary rocks. Lead-isotope studies indicate a model age of 598-424 Ma for the lead reservoir, consistent with the possible presence of local source rocks containing sulfur. The lead and sulfur in the ore veins were probably contaminated by Devonian carbonate-bearing marine sedimentary rocks and leached from Neoproterozoic to Cambrian magmatic activity. The lead-zinc deposits in Na Bop-Pu Sap do not display any Mississippi valley-type (MVT) or Sedimentary exhalative (SEDEX) lead-zinc deposit characteristics, as they appear to be related to shear zone-hosted lead-zinc deposits.
This work deals with the preparation of a zeolite/polymer flat sheet membrane with hierarchical porosity and ion-exchange properties. The performance of the prepared membrane was examined by the removal of chromium ions from simulated wastewater. A NaY zeolite (crystal size of 745.8 nm) was prepared by conventional hydrothermal treatment and fabricated with polyethersulfone (15% PES) in dimethylformamide (DMF) to obtain an ion-exchange ultrafiltration membrane. The permeate flux was enhanced by increasing the zeolite content within the membrane texture indicating increasing the hydrophilicity of the prepared membranes and constructing a hierarchically porous system. A membrane contain
The presence of construction wastes such as clay bricks, glass, wood, plastic, and others in large quantities causes serious environmental problems in the world. Where these wastes can be used to preserve the natural resources used in construction and reduce the impact of this problem on the environment, it also works to reduce the problem of high loads of concrete blocks. Clay bricks aggregate (AB) can be recycled as coarse aggregate and replaced with volumetric proportions of coarse aggregate by ( 5% and 10%), as well as the use of clay brick powder (PB) by replacing its weight of cement (5% and 10%) and reduced in the manufacture of concrete blocks (blocks). Four mixtures will be prepared and tested to learn how to re
... Show MoreBiosorption of cadmium ions from simulated wastewater using rice husk was studied with initial concentration of 25 mg/l. Equilibrium isotherm was studied using Langmuir, Freundlich, BET and Timken models. The results show that the Freundlich isotherm is the best fit model to describe this process with high determination coefficient equals to 0.983. There was a good compliance between the experimental and theoretical results. Highest removal efficiency 97% was obtained at 2.5g of adsorbent, pH 6 and contact time 100 min.
The presence of dyes in wastewater has become a major issue all over the world. The discharge of dyes in the environment is concerned for both toxicological and esthetical reasons. In this study, the removal of dyes from aqueous solution by electrocoagulation using aluminum electrodes as cathode and anode were investigated with the electrocoagulation cell of 1litter. The study included: the impact of various operating parameters on the dyes removal efficiency like pH, NaCl concentration, distance between electrodes, voltage, initial dyes concentration and type of electrodes. The dye (congo red) concentrations were (50, 100, 150, and 200 ppm), stirring speed was 120 rpm at room temperature. pH used was maintained constant
... Show MoreMany studies have been published to address the growing issues in wireless communication systems. Space-Time Block Coding (STBC) is an effective and practical MIMO-OFDM application that can address such issues. It is a powerful tool for increasing wireless performance by coding data symbols and transmitting diversity using several antennas. The most significant challenge is to recover the transmitted signal through a time-varying multipath fading channel and obtain a precise channel estimation to recover the transmitted information symbols. This work considers different pilot patterns for channel estimation and equalization in MIMO-OFDM systems. The pilot patterns fall under two general types: comb and block types, with
... Show MoreThis research aimed to examine the effect of concentration of dyes stuff, contact time, temperature and ratio of adsorbent weight in (gm) to volume of solution in (ml) on the percentage removal. Two dyes were used; direct blue 6 and direct yellow and the adsorbent was the maize cob. Batch experiments were performed by contacting different weights of adsorbent with 50 ml of solution of desired concentration with continuous stirring at various temperatures. The percentage of removal was calculated and the maximum percentage of removal was 80%. And as the concentration of solution, contact time, temperature and the ratio of adsorbent to volume of solution increase the percentage of removal increase.
An experimental study is made here to investigate the discharge coefficient for contracted rectangular Sharp crested weirs. Three Models are used, each with different weir width to flume width ratios (0.333, 0.5, and 0.666). The experimental work is conducted in a standard flume with high-precision head and flow measuring devices. Results are used to find a dimensionless equation for the discharge coefficient variation with geometrical, flow, and fluid properties. These are the ratio of the total head to the weir height, the ratio of the contracted weir width to the flume width, the ratio of the total head to the contracted width, and Reynolds and Weber numbers. Results show that the relationship between the discharge co
... Show MoreThe change in project cost, or cost growth, occurs from many factors, some of which are related to soil problem conditions that may occurs during construction and/or during site investigation period. This paper described a new soil improvement method with a minimum cost solution by using polymer fiber materials having a length of (3 cm) in both directions and (2.5 mm) in thickness, distributed in uniform medium dense .
sandy soil at different depths (B, 1.5B and 2B) below the footings. Three square footings has been used (5,7.5 and 10 cm) to carry the above investigation by using lever arm loading system design for such purposes.
These fibers were distributed from depth of (0.1B) below the footing base down to the investigated dep