The Ligand 6,6--(1,2-benzenediazo) bis (3-aminobenzoicacid) derived from o-phenylenediamine and 3-aminobenzoicacid was synthesized. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions (CoII, NiII, CuII and ZnII ) in aqueous ethanol with a 1:1 M:L ratio and at optimum pH. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). High molar absorbtivity of the complex solutions were observed. On the basis of physicochemical data tetrahedral geometries were assigned for the complexes. The ligand and metal complexes were screened for their antimicrobial activity.
A new ligand [N-(3-acetylphenylcarbamothioyl)-4-methoxybenzamide](MAA) was synthesized by reaction of 4-methoxybenzoylisothiocyanate with 3-aminoacetophenone,The ligand was characterized by elemental microanalysis C.H.N.S, FT-IR, UV-Vis and 1H,13CNMR spectra, some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(MAA)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral
In this work, Schiff base ligands L1: N, N-bis (2-hydroxy-1-naphthaldehyde) hydrazine, L2: N, N-bis (salicylidene) hydrazine, and L3:N –salicylidene- hydrazine were synthesized by condensation reaction. The prepared ligands were reacted with specific divalent metal ions such as (Mn2+, Fe2+, Ni2+) to prepare their complexes. The ligands and complexes were characterized by C.H.N, FT-IR, UV-Vis, solubility, melting point and magnetic susceptibility measurements. The results show that the ligands of complexes (Mn2+, Fe2+) have octahedral geometry while the ligands of complexes (Ni2+) have tetrahedral geometry.
This work includes the synthesis of new ester compounds containing two 1,3,4-oxadiazole rings, 15a-c and 16a-c. This was done over seven steps, starting with p-acetamido-phenol 1 and 2-mercaptobenzoimidazole 2. The structure of the products was determined using FT-IR, 1H NMR, and mass spectroscopy. The evaluation of the antimicrobial activities of some prepared compounds was achieved against four types of bacteria (two types of gram-positive bacteria; Staphylococcus aureus and Bacillus subtilis, and two types of gram-negative bacteria, Pseudomonas aeruginosa and E. Coli), as well as against one types of fungus (C. albino). The results show moderate activit against the study bacteria, and the theoretical analysis of the toxi
... Show MoreThe study involved preparing a new compound by combining between 2- hydroxybenzaldehyde and (Z)-3-hydrazineylideneindolin-2-one resulting in Schiff bases and metal ions: Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) forming stable minerals-based-Schiff complexes. The formation of resulting Schiff bases is detected spectrally using LC-Mss which gave corresponding results with theoretical results, 1H-NMR proves the founding of N=CH signal, FT-IR indicates the occurrence of imine band and UV-VIs mean is proved the ligand formation. On the other hand, minerals-based-Schiff was characterized using the same spectral means that relied with ligand (Schiff bases). Those means gave satisfactory results and proved the suggested distinguishable geometries
... Show More