Both traditional and novel techniques were employed in this work for magnetic shielding evaluation to shed new light on the magnetic and aromaticity properties of benzene and 12 [n]paracyclophanes with n = 3–14. Density functional theory (DFT) with the B3LYP functional and all-electron Jorge-ATZP and x2c-TZVPPall-s basis sets was utilized for geometry optimization and magnetic shielding calculations, respectively. Additionally, the 6-311+G(d,p) basis set was incorporated for the purpose of comparing the magnetic shielding results. In addition to traditional evaluations such as NICS/NICSzz-Scan, and 2D-3D σiso(r)/σzz(r) maps, two new techniques were implemented: bendable grids (BGs) and cylindrical grids (CGs) of ghost atoms (Bqs). BGs allow for the recording of magnetic shielding from the bent ring levels of [n]pCPs, while CGs provide tubular magnetic shielding scan (TMSS) maps detailing the magnetic shielding from a cylindrical region above and below the ring frame. Our findings suggest that smaller [n]pCPs with n < 6 exhibit deviations in the magnetic shielding above and below the ring, indicating a broken electron delocalization under the ring. In contrast, larger [n]pCPs tend to behave similarly to benzene in terms of magnetic shielding. Moreover, we found that shorter polymethylene chains of [n]pCPs exhibit significantly higher magnetic shielding interactions with the ring. Both of the above techniques offer new and promising tools for characterizing nonplanar aromatic compounds, thereby contributing to a deeper understanding of their magnetic and electronic properties.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThe Cu(II) was found using a quick and uncomplicated procedure that involved reacting it with a freshly synthesized ligand to create an orange complex that had an absorbance peak of 481.5 nm in an acidic solution. The best conditions for the formation of the complex were studied from the concentration of the ligand, medium, the eff ect of the addition sequence, the eff ect of temperature, and the time of complex formation. The results obtained are scatter plot extending from 0.1–9 ppm and a linear range from 0.1–7 ppm. Relative standard deviation (RSD%) for n = 8 is less than 0.5, recovery % (R%) within acceptable values, correlation coeffi cient (r) equal 0.9986, coeffi cient of determination (r2) equal to 0.9973, and percentage capita
... Show MoreThe current study suggested a thermal treatment as a necessary proactive step in improving the adsorption capacity of bio-waste for contaminants removal in wastewater. This approach was based on the experimental and histological investigation of biowaste pods shell. This investigation showed that these shells compose of parenchyma cells that store secondary metabolites compounds produced from cells were exhibited in present study. The results also reported that these compounds are extracted directly from the cells as soon as they are exposed to an aqueous solution, hampering their use as an adsorbent material. The increase in the weight of bio-waste adsorbent at unit liquid volume increases the production of secondary metabolites compounds
... Show MoreThe performance of a synergistic combination of electrocoagulation (EC) and electro-oxidation (EO) for oilfield wastewater treatment has been studied. The effect of operative variables such as current density, pH, and electrolyte concentration on the reduction of chemical oxygen demand (COD) was studied and optimized based on Response Surface Methodology (RSM). The results showed that the current density had the highest impact on the COD removal with a contribution of 64.07% while pH, NaCl addition and other interactions affects account for only 34.67%. The optimized operating parameters were a current density of 26.77 mA/cm2 and a pH of 7.6 with no addition of NaCl which results in a COD removal efficiency of 93.43% and a specific energy c
... Show MoreIn this paper, new brain tumour detection method is discovered whereby the normal slices are disassembled from the abnormal ones. Three main phases are deployed including the extraction of the cerebral tissue, the detection of abnormal block and the mechanism of fine-tuning and finally the detection of abnormal slice according to the detected abnormal blocks. Through experimental tests, progress made by the suggested means is assessed and verified. As a result, in terms of qualitative assessment, it is found that the performance of proposed method is satisfactory and may contribute to the development of reliable MRI brain tumour diagnosis and treatments.
In this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
The aim of this paper is to introduces and study the concept of CSO-compact space via the notation of simply-open sets as well as to investigate their relationship to some well known classes of topological spaces and give some of his properties.