<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, comes in second place with a gross ratio of 91%. Furthermore, Bayesian ridge (BR), linear regressor (LR), and stochastic gradient descent (SGD), with mean square error and with accuracy ratios of 84.365%, 84.363%, and 79%. As a result, the performance precision of these regression models yields. The interaction framework was designed to be a straightforward tool for working with this paradigm. This model is a valuable tool for establishing strategies to counter the swiftness of climate change in the area under study.</span>
Artificial intelligence (AI) offers significant benefits to biomedical research and academic writing. Nevertheless, using AI-powered writing aid tools has prompted worries about excessive dependence on these tools and their possible influence on writing proficiency. The current study aimed to explore the academic staff’s perspectives on the impact of AI on academic writing. This qualitative study incorporated in-person interviews with academic faculty members. The interviews were conducted in a semi-structured manner, using a predetermined interview guide consisting of open-ended questions. The interviews were done in person with the participants from May to November 2023. The data was analyzed using thematic analysis. Ten academics aged
... Show More
ABSTRUCT
The main aim of this research has been associated with the study of relationship between competitive intelligence and strategic risk, and to deduct their specific trends, which are interpreted as predicted by research hypotheses according to a review of literature including prior studies. The basic theme of these hypotheses is related to the probability that declining levels of strategic risk and competitive positions of industrial companies is dependent upon the growing capacity to stay ahead of competitors in the market.
A purposive non-random
... Show MoreThe current research aims to verify the role of strategic intelligence as an explanatory variable in organizational success as a respondent variable in the colleges of the University of Fallujah, the research community. (Dean, Associate Dean, Section Head, Division Officer, Unit Officer), The researcher used the questionnaire as the main tool to collect data that included (50) items, in addition to using personal interviews and field observations as aids in data collection. The researcher relied on statistical programs (SPSS V.25; Excel V (16) In the treatment and analysis of data through the use of the most appropriate statistical methods (arithmetic mean, standard deviation, difference coefficient, determinatio
... Show MoreThe information revolution، the new language has become one for all the peoples of the world through handling and exchange and to participate in all key areas (economic، cultural and scientific) and Accounting episode of this revolution has turned most of the traditional systems (manual) in companies to automated systems، this transformation in the regulations summoned from the auditors that develops their traditional examination automated systems so had to provide tools for auditing help auditors to keep abreast of developments and as a result there is no evidence checksum Local Private audited automated systems came search to provide evidence helps auditors for guidance as part of COBIT، which provides audit procedures Detailed inf
... Show MoreIn this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients
... Show MoreAbstract
Binary logistic regression model used in data classification and it is the strongest most flexible tool in study cases variable response binary when compared to linear regression. In this research, some classic methods were used to estimate parameters binary logistic regression model, included the maximum likelihood method, minimum chi-square method, weighted least squares, with bayes estimation , to choose the best method of estimation by default values to estimate parameters according two different models of general linear regression models ,and different s
... Show MoreThe financial markets are one of the sectors whose data is characterized by continuous movement in most of the times and it is constantly changing, so it is difficult to predict its trends , and this leads to the need of methods , means and techniques for making decisions, and that pushes investors and analysts in the financial markets to use various and different methods in order to reach at predicting the movement of the direction of the financial markets. In order to reach the goal of making decisions in different investments, where the algorithm of the support vector machine and the CART regression tree algorithm are used to classify the stock data in order to determine
... Show MoreThis research sought to present a concept of cross-sectional data models, A crucial double data to take the impact of the change in time and obtained from the measured phenomenon of repeated observations in different time periods, Where the models of the panel data were defined by different types of fixed , random and mixed, and Comparing them by studying and analyzing the mathematical relationship between the influence of time with a set of basic variables Which are the main axes on which the research is based and is represented by the monthly revenue of the working individual and the profits it generates, which represents the variable response And its relationship to a set of explanatory variables represented by the
... Show More
Abstract
Due to the lack of previous statistical study of the behavior of payments, specifically health insurance, which represents the largest proportion of payments in the general insurance companies in Iraq, this study was selected and applied in the Iraqi insurance company.
In order to find the convenient model representing the health insurance payments, we initially detected two probability models by using (Easy Fit) software:
First, a single Lognormal for the whole sample and the other is a Compound Weibull for the two Sub samples (small payments and large payments), and we focused on the compoun
... Show More