Preferred Language
Articles
/
DxenW5IBVTCNdQwC2K3g
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, comes in second place with a gross ratio of 91%. Furthermore, Bayesian ridge (BR), linear regressor (LR), and stochastic gradient descent (SGD), with mean square error and with accuracy ratios of 84.365%, 84.363%, and 79%. As a result, the performance precision of these regression models yields. The interaction framework was designed to be a straightforward tool for working with this paradigm. This model is a valuable tool for establishing strategies to counter the swiftness of climate change in the area under study.</span>

Scopus Crossref
View Publication
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Using VGG Models with Intermediate Layer Feature Maps for Static Hand Gesture Recognition
...Show More Authors

A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare Estimate Methods of Parameter to Scheffʼe Mixture Model By Using Generalized Inverse and The Stepwise Regression procedure for Treatment Multicollinearity Problem
...Show More Authors

Mixture experiments are response variables based on the proportions of component for this mixture. In our research we will compare the scheffʼe model with the kronecker model for the mixture experiments, especially when the experimental area is restricted.

     Because of the experience of the mixture of high correlation problem and the problem of multicollinearity between the explanatory variables, which has an effect on the calculation of the Fisher information matrix of the regression model.

     to estimate the parameters of the mixture model, we used the (generalized inverse ) And the Stepwise Regression procedure

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Estimation Mean Wind Speed in Iraq By Using Parametric And Nonparametric Linear Mixed Models
...Show More Authors

In this research, the one of the most important model and widely used in many and applications is linear mixed model, which widely used to analysis the longitudinal data that characterized by the repeated measures form .where estimating linear mixed model by using two methods (parametric and nonparametric) and used to estimate the conditional mean and marginal mean in linear mixed model ,A comparison between number of models is made to get the best model that will represent the mean wind speed in Iraq.The application is concerned with 8 meteorological stations in Iraq that we selected randomly and   then we take a monthly data about wind speed over ten years Then average it over each month in corresponding year, so we g

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 11 2025
Journal Name
Iraqi Statisticians Journal
Estimating General Linear Regression Model of Big Data by Using Multiple Test Technique
...Show More Authors

View Publication
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Iraqi Journal Of Physics
Statistical Analysis and Forecasting of Rainfall Patterns and Trends in Gombe North-Eastern Nigeria
...Show More Authors

Rainfall in Nigeria is highly dynamic and variable on a temporal and spatial scale. This has taken a more pronounced dimension due to climate change. In this study, Standard Precipitation Index (SPI) and Mann-Kendall test statistical tools were employed to analyze rainfall trends and patterns in Gombe metropolis between 1990 and 2020 and the ARIMA model was used for making the forecast for ten (10) years. Daily rainfall data of 31 years obtained from Nigerian Meteorological Agency, (NIMET) was used for the study. The daily rainfall data was subjected to several analyses. Standard precipitation index showed that alternation of wet and dry period conditions had been witnessed in the study area. The result obtained showed that there is an u

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ieee Access
Wrapper and Hybrid Feature Selection Methods Using Metaheuristic Algorithms for English Text Classification: A Systematic Review
...Show More Authors

Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall

... Show More
View Publication Preview PDF
Scopus (46)
Crossref (38)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Ieee Xplore
A Hybrid Modified Lightweight Algorithm Combined of Two Cryptography Algorithms PRESENT and Salsa20 Using Chaotic System
...Show More Authors

Cryptography algorithms play a critical role in information technology against various attacks witnessed in the digital era. Many studies and algorithms are done to achieve security issues for information systems. The high complexity of computational operations characterizes the traditional cryptography algorithms. On the other hand, lightweight algorithms are the way to solve most of the security issues that encounter applying traditional cryptography in constrained devices. However, a symmetric cipher is widely applied for ensuring the security of data communication in constraint devices. In this study, we proposed a hybrid algorithm based on two cryptography algorithms PRESENT and Salsa20. Also, a 2D logistic map of a chaotic system is a

... Show More
Scopus (30)
Crossref (15)
Scopus Crossref
Publication Date
Sat Oct 02 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Using the wavelet analysis to estimate the nonparametric regression model in the presence of associated errors
...Show More Authors

Abstract The wavelet shrink estimator is an attractive technique when estimating the nonparametric regression functions, but it is very sensitive in the case of a correlation in errors. In this research, a polynomial model of low degree was used for the purpose of addressing the boundary problem in the wavelet reduction in addition to using flexible threshold values in the case of Correlation in errors as it deals with those transactions at each level separately, unlike the comprehensive threshold values that deal with all levels simultaneously, as (Visushrink) methods, (False Discovery Rate) method, (Improvement Thresholding) and (Sureshrink method), as the study was conducted on real monthly data represented in the rates of theft crimes f

... Show More
Publication Date
Sun Mar 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Spectral fluctuations in <sup>24</sup>Mg nucleus using the framework of the nuclear shell model
...Show More Authors
Abstract<p>Random matrix theory is used to study the chaotic properties in nuclear energy spectrum of the <sup>24</sup>Mg nucleus. The excitation energies (which are the main object of this study) are obtained via performing shell model calculations using the OXBASH computer code together with an effective interaction of Wildenthal (W) in the isospin formalism. The <sup>24</sup>Mg nucleus is assumed to have an inert <sup>16</sup>O core with 8 nucleons (4protons and 4neutrons) move in the 1d<sub>5/2</sub>, 2s<sub>1/2</sub> and 1d<sub>3/2</sub> orbitals. The spectral fluctuations are studied by two statistical measures: the nearest neighb</p> ... Show More
View Publication
Scopus Crossref
Publication Date
Fri Oct 01 2010
Journal Name
2010 Ieee Symposium On Industrial Electronics And Applications (isiea)
Distributed t-way test suite data generation using exhaustive search method with map and reduce framework
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Crossref