The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
This book includes four main chapters: 1. Indefinite Integral. 2. Methods of Integration. 3. Definite Integral. 4. Multiple Integral. In addition to many examples and exercises for the purpose of acquiring the student's ability to think correctly in solving mathematical questions.
In this study, the relationship between the bare soil temperature with respect to its salinity is presented, the bare soil feature is considered only by eliminating all other land features by classifying the site location by using the support vector machine algorithm, in the same time the salinity index that calculated from the spectral response from the satellite bands is calibrated using empirical salinity value calculated from field soil samples. A 2D probability density function is used to analyze the relationship between the temperature rising from the minimum temperature (from the sunrise time) due to the solar radiation duration tell the time of the satellite capturing the scene image and the calibrated salinity index is presented. T
... Show MoreIn this paper, RBF-based multistage auto-encoders are used to detect IDS attacks. RBF has numerous applications in various actual life settings. The planned technique involves a two-part multistage auto-encoder and RBF. The multistage auto-encoder is applied to select top and sensitive features from input data. The selected features from the multistage auto-encoder is wired as input to the RBF and the RBF is trained to categorize the input data into two labels: attack or no attack. The experiment was realized using MATLAB2018 on a dataset comprising 175,341 case, each of which involves 42 features and is authenticated using 82,332 case. The developed approach here has been applied for the first time, to the knowledge of the authors, to dete
... Show MoreThe main purpose of the research is to diagnose the importance of the role that strategic memory plays with its three variables (content, structure, and processes) in helping the human resource department to use the COSO model with its five components (culture and governance, strategy and objectives, performance, communications and information, and feedback) in auditing activities and tasks Her own. As the research problem emphasized the existence of a lack of cognitive perception, of the importance of strategic memory, and the investment of its components in the rationalization of the application of the COSO model. and therefore it can be emphasized that the importance of the research is to provide treatments for problems relate
... Show MoreFractal geometry is receiving increase attention as a quantitative and qualitative model for natural phenomena description, which can establish an active classification technique when applied on satellite images. In this paper, a satellite image is used which was taken by Quick Bird that contains different visible classes. After pre-processing, this image passes through two stages: segmentation and classification. The segmentation carried out by hybrid two methods used to produce effective results; the two methods are Quadtree method that operated inside Horizontal-Vertical method. The hybrid method is segmented the image into two rectangular blocks, either horizontally or vertically depending on spectral uniformity crit
... Show MoreBreast cancer has got much attention in the recent years as it is a one of the complex diseases that can threaten people lives. It can be determined from the levels of secreted proteins in the blood. In this project, we developed a method of finding a threshold to classify the probability of being affected by it in a population based on the levels of the related proteins in relatively small case-control samples. We applied our method to simulated and real data. The results showed that the method we used was accurate in estimating the probability of being diseased in both simulation and real data. Moreover, we were able to calculate the sensitivity and specificity under the null hypothesis of our research question of being diseased o
... Show MoreIn any natural area or water body, evapotranspiration is one of the main outcomes in the water balance equation. It is also a crucial component of the hydrologic cycle and considers as the main requirement in the planning and designing of any irrigation project. The climatic parameters for the Ishaqi area are calculated from the available date of Samarra and Al-Khlais meteorological stations according to a method for the period (1982–2017) according to Fetter method. The results of the mean of rainfall, relative humidity temperature, evaporation, sunshine, and wind speed of the Ishaqi area are 171.96 mm, 49.67%, 24.86 C°, 1733.61 mm, 8.34 h/day, and 2.3 m/sec, respectively. Values of Potential Evapotranspiration are determined by
... Show MoreThe vegetable cover plays an important role in the environment and Earth resource sciences. In south Iraq, the region is classified as arid or semiarid area due to the low precipitations and high temperature among the year. In this paper, the Landat-8 satellite imagery will be used to study and estimate the vegetable area in south Iraq. For this purpose many vegetation indices will be examined to estimate and extract the area of vegetation contain in and image. Also, the weathering parameters must be investigated to find the relationship between these parameters and the arability of vegetation cover crowing in the specific area. The remote sensing packages and Matlab written subroutines may be use to evaluate the results.
Thisstudy aims to determine the specifications of obese women accordingto the heightand type of obesity. It also aimstoidentify the significance of differences in choosing ready-made clothes for the research sample. Finally, the significance of differences in choosing ready-made clothes according to the variable of binaryclassification ofobesity is also identified.The study sample includes obese women: employees, non-employees and students with the age group (18-50) years.The weights and lengths of the sample have been taken to suit the group of obese women.Aquestionnaire in the form of an open question was distributed among (50) obese womenso as to extract the items of the questionnaire. After that, the questionnaire was distributed amo
... Show MoreThis work presents a comparison between the Convolutional Encoding CE, Parallel Turbo code and Low density Parity Check (LDPC) coding schemes with a MultiUser Single Output MUSO Multi-Carrier Code Division Multiple Access (MC-CDMA) system over multipath fading channels. The decoding technique used in the simulation was iterative decoding since it gives maximum efficiency at higher iterations. Modulation schemes used is Quadrature Amplitude Modulation QAM. An 8 pilot carrier were
used to compensate channel effect with Least Square Estimation method. The channel model used is Long Term Evolution (LTE) channel with Technical Specification TS 25.101v2.10 and 5 MHz bandwidth bandwidth including the channels of indoor to outdoor/ pedestrian