The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
Eye Detection is used in many applications like pattern recognition, biometric, surveillance system and many other systems. In this paper, a new method is presented to detect and extract the overall shape of one eye from image depending on two principles Helmholtz & Gestalt. According to the principle of perception by Helmholz, any observed geometric shape is perceptually "meaningful" if its repetition number is very small in image with random distribution. To achieve this goal, Gestalt Principle states that humans see things either through grouping its similar elements or recognize patterns. In general, according to Gestalt Principle, humans see things through genera
... Show MoreNeural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.
Shadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.
Abstract  
... Show MoreObjective: Develop a deliberate thinking scale for the setting skill in volleyball for second-year female students in the College of Physical Education and Sports Sciences for Woman. Research methodology: The researchers used the experimental approach, employing a two-group approach (pre-test and post-test), to suit the nature of the research. The research community comprised (65) second-year female students from the College of Physical Education and Sports Sciences for Woman at the University of Baghdad for the academic year 2024-2025. The research sample was randomly selected, with (15) students in Section A, the experimental group, and (15) students in Section B, the control group. This group represented (46%) of the students. Th
... Show MoreThis research aims toknow the learning styles according to the model of Felder and Silverman and its relationship to effectively self- perceived mathematicalamong students of the Faculty of Education Pure Sciences - Ibn al-Haytham. By answering the following questions: 1. What are the preferred methods of learning among students in the mathematics department according to the model Felder and Silverman? 2. What is the mathematicalself-perceived levelof the students at the Department of Mathematics effectiveness level? 3. What is the relationship between learning styles according to the Felder model and Silverman and the effectiveness of mathematical self-perceived of the students of the Department of Mathematics? The research sample consiste
... Show MoreObjective: Develop a deliberate thinking scale for the setting skill in volleyball for second-year female students in the College of Physical Education and Sports Sciences for Woman. Research methodology: The researchers used the experimental approach, employing a two-group approach (pre-test and post-test), to suit the nature of the research. The research community comprised (65) second-year female students from the College of Physical Education and Sports Sciences for Woman at the University of Baghdad for the academic year 2024-2025. The research sample was randomly selected, with (15) students in Section A, the experimental group, and (15) students in Section B, the control group. This group represented (46%) of the students. Th
... Show MoreDue to the large population of motorway users in the country of Iraq, various approaches have been adopted to manage queues such as implementation of traffic lights, avoidance of illegal parking, amongst others. However, defaulters are recorded daily, hence the need to develop a mean of identifying these defaulters and bring them to book. This article discusses the development of an approach of recognizing Iraqi licence plates such that defaulters of queue management systems are identified. Multiple agencies worldwide have quickly and widely adopted the recognition of a vehicle license plate technology to expand their ability in investigative and security matters. License plate helps detect the vehicle's information automatically ra
... Show MoreThe public budget is on the same time an art and a science .As an accountable science it seeks balance between public income and public expenditure for an accountable year. And as an accountable art it seeks to achieve economic balance by distributing equitable income in order to reach sustainable development .This is the optimal use of all natural and human resources to address scarcity of natural resources facing the increase need of human resources by spending on education, health, environment, housing, agriculture and industry to achieve social justice for the current generation and future generations. Since the first budget in Iraq on 1921 an accounting budget, is balancing the sections and items has been adopted and since the publi
... Show More