The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
The world and the business environment are constantly witnessing many economic changes that have led to the expansion of the business' volume due to mergers and the increase in an investments volume and the complexity of business and the transformation of some systems, which was reflected on the size of the risk and uncertainty which led to necessity of a presence of transparent and objective accounting information In the way that reflects the financial performance of the economic units to be available to all users of that information, therefore, The need for the existence of indicators for transparency in the disclosure of accounting information that these units adhere to. Standards & Poor's indicators, which included items
... Show MoreAbstract
The research study about the empowerment as an independent variable, in which details include (training and improvement, incentives, information sharing, trust, and delegation), has also focused on the performance of the service organization as a dependent variable in all dimensions which include (improve work efficiency, building the core competencies, focus on the beneficiary of the service, increasing the feeling of satisfaction of the employees, and the organizational support commitment). The research has been based on the opinions of a chosen sample of 75 service officers of the Ministry of Interior who work at the General Directorate of Traffic. The research problem has been identified by t
... Show MoreMM ABDUL-WAHHAB, SA AHMED, International Journal of Pharmaceutical Research, 2020 - Cited by 2
Objective : Sciatic nerve block (popliteal approach) and femoral N block is a new technique other than general anesthesia in below knee surgery because it provides adequate muscle relaxation, with good intraoperative and post-operative analgesia. Nefopam is non opioid, non-respiratory depressant and non-sedative was mixed with local anesthetics drug to study the effects. This study was done to compare the onset and duration of sensory and onset time and duration of action of motor block following administration of either bupivacaine alone with administration of bupivacaine and Nefopam in patients undergoing below knee lower limb surgeries under ultrasound guided regional anesthesia.
Methods: 100 patients with American society of anest
Background: Measuring implant stability is an important issue in predicting treatment success. Dental implant stability is usually measured through resonance frequency analysis (RFA). Osstell® RFA devices can be used with transducers (Smartpeg™) that correspond to the implants used as well as with transducers designed for application with Penguin® RFA devices (Multipeg™). Aims: This study aims to assess the reliability of a MultiPeg™ transducer with an Osstell® device in measuring dental implant stability. Materials and Methods: Sixteen healthy participants who required dental implant treatment were enrolled in this study. Implant stability was measured by using an Osstell® device with two transducers, namely, Smartpeg™ and M
... Show MoreLaser shock peening (LSP) is deemed as a deep-rooted technology for stimulating compressive residual stresses below the surface of metallic elements. As a result, fatigue lifespan is improved, and the substance properties become further resistant to wear and corrosion. The LSP provides more unfailing surface treatment and a potential decrease in microstructural damage. Laser shock peening is a well-organized method measured up to the mechanical shoot peening. This kind of surface handling can be fulfilled via an intense laser pulse focused on a substantial surface in extremely shorter intervals. In this work, Hydrofluoric Acid (HF) and pure water as a coating layer were utilized as a new technique to improve the properti
... Show MoreObjective: To identify causes of maternal death in Mizan Aman and Gebretsadik shawo general hospitals
Methodology: A case control study on 595 charts, 119 cases and 476 controls was conducted in Mizan
Aman & Gebretsadik shawo general hospitals. Data was analyzed by STATA 13.1. Propensity score
matching analysis was used to see causes of maternal death.
Results: Hemorrhage were the main direct causes of maternal death which accounts 47.9% (β =0.58
(95% CI (0.28,0.87)) in hospital but when projected to population based the sample (β =0.26 (95% CI
(0.22,0.31)). Followed by infection 36 (25.21%) (β = 0.50 (95% CI (0.08, 0.92)). when projected to
population based the sample PIH 7.6%) is significant cause (β = 0.16
The aim of the study was to evaluate the efficacy of diode laser (λ=940 nm) in the management of gingival hyperpigmentation compared to the conventional bur method. Materials and methods: Eighteen patients with gingival hyperpigmentation were selected for the study with an age between 12-37 years old. The site of treatment was the upper gingiva using diode laser for the right half and the conventional method for the left half. All patients were re-evaluated after the following intervals: 3 days, 7 days, 1 month and 6 months post-operation. Pain and functions were re-evaluated in each visit for a period of 1 day, 3 days and 1 week post-operation. Laser parameters included 1.5 W in continuous mode with an initiated tip (400 μm) placed in
... Show MoreIn this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.