The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
Unconfined compressive strength (UCS) of rock is the most critical geomechanical property widely used as input parameters for designing fractures, analyzing wellbore stability, drilling programming and carrying out various petroleum engineering projects. The USC regulates rock deformation by measuring its strength and load-bearing capacity. The determination of UCS in the laboratory is a time-consuming and costly process. The current study aims to develop empirical equations to predict UCS using regression analysis by JMP software for the Khasib Formation in the Buzurgan oil fields, in southeastern Iraq using well-log data. The proposed equation accuracy was tested using the coefficient of determination (R²), the average absolute
... Show MoreThis paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
The novel Vierordt’s approach, or simultaneous equation method, was created and validated for the concurrent determination of vincristine sulfate (VCS) and bovine serum albumin (BSA) in pure solutions utilizing UV spectrophotometry. It is simple, precise, economical, rapid, reliable, and accurate. This method depends on measuring absorbance at two wavelengths, 296 nm and 278 nm, which correspond to the λmax of VCS and BSA in deionized water, respectively. The calibration curves of VCS and BSA are linear at concentration ranges of 10–60 μg/mL and 200–1600 μg/mL, with correlation coefficient values (R2) of 1 and 0.999, respectively. The limits of detection (LOD) and quantification (LO
... Show MoreRadon is the most dangerous natural radioactive component affecting the human population, since it is a radioactive gas that results from the decomposition process of uranium deposits in soil, rocks, and water, and it is damaging both humans and the ecosystem. The radon concentrations and exhalation rate in soil samples from various locations were determined using a passive approach with a CR-39 (CR-39 is Columbia Resin #39; it is allyl diglycol carbonate C12H18O7) detector in Amiriya region in Baghdad Governorate. The average values of radon concentrations are ranged from 47.3 to 54.2 Bq·m−3. From the obtained results, we can conclude that the values of all studied locations are
The effects of using aqueous nanofluids containing covalently functionalized graphene nanoplatelets with triethanolamine (TEA-GNPs) as novel working fluids on the thermal performance of a flat-plate solar collector (FPSC) have been investigated. Water-based nanofluids with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% of TEA-GNPs with specific surface areas of 300, 500, and 750 m2/g were prepared. An experimental setup was designed and built and a simulation program using MATLAB was developed. Experimental tests were performed using inlet fluid temperatures of 30, 40, and 50 °C; flow rates of 0.6, 1.0, and 1.4 kg/min; and heat flux intensities of 600, 800, and 1000 W/m2. The FPSC’s efficiency increased as the flow rate and hea
... Show More