Preferred Language
Articles
/
DhgG55gBVTCNdQwCasKj
Machine learning models for predicting morphological traits and optimizing genotype and planting date in roselle (Hibiscus Sabdariffa L.)
...Show More Authors

Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genotype-by-environment interactions. Permutation-based feature importance analysis further revealed that planting date had a more significant impact on trait variation than genotype. To identify optimal combinations of genotype and planting date for maximizing morphological traits, the RF model was integrated with the Non-dominated Sorting Genetic Algorithm II (NSGA-II). According to the RF–NSGA-II optimization results, the optimal values, including 26 branches per plant, a growth period of 176 days, 116 bolls per plant, and 1517 seed numbers per plant, were achieved with the Qaleganj genotype planted on May 5. Collectively, these findings highlight the potential of integrating machine learning and evolutionary optimization algorithms as powerful computational tools for crop improvement and agronomic decision-making.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 31 2024
Journal Name
Sabrao Journal Of Breeding And Genetics
MORPHOLOGICAL AND ANATOMICAL STUDY OF THE FLORAL PARTS OF LILY (LILIUM CANDIDUM L.) CULTIVATED IN IRAQ
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Detection of Suicidal Ideation on Twitter using Machine Learning & Ensemble Approaches
...Show More Authors

Suicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim o

... Show More
View Publication Preview PDF
Scopus (42)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Journal Of Engineering And Sustainable Development
Improving Performance Classification in Wireless Body Area Sensor Networks Based on Machine Learning Techniques
...Show More Authors

Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Aug 02 2018
Journal Name
Indian Journal Of Agricultural Research
Anatomical and physiological traits of broad bean (Vicia faba L.) seedling affected by salicylic acid and salt stress
...Show More Authors

A laboratory experiment was carried out at the College of Agriculture University of Baghdad in 2017. The aim was to improve the anatomical and physiological traits of broad bean seedling under salt stress by soaking it in salicylic acid. The concentrations of salicylic acid were 0, 10, and 20 mg L-1 and the electrical conductivity levels were 0, 3, and 6 dS m-1. The complete randomized design was used with four replications. The increasing of salicylic acid concentration up to 10 mg L-1 led to increasing the stem cortex thickness, stem vascular bundles thickness, and root cortex thickness significantly by (34.9,36.7,and 55 μm) respectively, while the treatment of 20 mg L-1 led to decreasing these traits by (28.2, 27.8, and 48.1 μm), compa

... Show More
View Publication Preview PDF
Publication Date
Thu Aug 02 2018
Journal Name
Indian Journal Of Agricultural Research
Anatomical and physiological traits of broad bean (Vicia faba L.) seedling affected by salicylic acid and salt stress
...Show More Authors

A laboratory experiment was carried out at the College of Agriculture University of Baghdad in 2017. The aim was to improve the anatomical and physiological traits of broad bean seedling under salt stress by soaking it in salicylic acid. The concentrations of salicylic acid were 0, 10, and 20 mg L-1 and the electrical conductivity levels were 0, 3, and 6 dS m-1. The complete randomized design was used with four replications. The increasing of salicylic acid concentration up to 10 mg L-1 led to increasing the stem cortex thickness, stem vascular bundles thickness, and root cortex thickness significantly by (34.9,36.7,and 55 µm) respectively, while the treatment of 20 mg L-1 led to decreasing these traits by (28.2, 27.8, and 48.1 µm

... Show More
View Publication
Scopus (19)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Ieee Access
Transfer Learning and Hybrid Deep Convolutional Neural Networks Models for Autism Spectrum Disorder Classification From EEG Signals
...Show More Authors

View Publication
Scopus (13)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Non-linear support vector machine classification models using kernel tricks with applications
...Show More Authors

The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Morphological study of pollen-grains for the wild species of the genus Erysimum L. (Crucifereae) in Iraq
...Show More Authors

Pollen grains morphology have been studied for the wild species of the genus Erysimum L. which belong to Crucifereae family in Iraq. These species are E. filifolium Boiss. et Hausskn., E. oleifolium J. Gay, E. repandum L., E. eginense Hausskn. ex Bornm., E. aucheranum J. Gay, E. cheiranthoides L., E. alpestre Ky. ex Boiss., E. kurdicum Boiss. et Hausskn., E. tenellum DC., E. strophades Boiss., E. gladiiferum Boiss. et Hausskn., E. nasturtioides Boiss. et Hausskn. The study was performe by using light microscope . The study reveal that there was only one type of pollen grain named Tricoplate in all studied species . The study also demonstrated that there were differences among pollen grains morphology . The species E. kurdicum , E. alpestre

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri May 15 2015
Journal Name
Euphrates Journal Of Agricultural Science
Performance Evaluation of field and genetic for genotype selection from Tomato Lycopersicon esculeuntum Mill.
...Show More Authors

The study was conducted at the fields of the Department of Horticulture and Landscape Gardening,College of Agriculture, University of Baghdad during the growing seasons of 2013- 2014 .forPerformance of Evaluation Vegetative growth and yield traits and estimate some important geneticparameter on seven selected breed of tomato which (S1-S7 ) Pure line. the results found significantdifferences between breeds in all study trails except clusters flowering number .S1 significantly plantlength which reached 227.3 .Also S1,S2 and S4 were significantly increased the number fruit for plant,Fruit weight Increased in S3 ,S6 and plant yield. Increased in S1, S4 ,S5. Genetic variation valueswere low in Floral clusters , TSS and fruit firmest and medium i

... Show More