Femtosecond laser pulse propagation in monomode optical fibers is demonstrated and investigated numerically (by simulations) and experimentally in this paper. A passively mode locked Nd:glass laser giving a pulse duration of about 200 fsec at 1053 nm wavelength and 120 mW average optical power with 100 MHz repetition rate is used in the experimental work. Numerical simulations are done by solving the nonlinear Schrödinger equation with the aid of Matlab program. The results show that self phase modulation (SPM) leads to compression of the spectral width from 5 nm to 2.1 nm after propagation of different optical powers (34, 43, 86 and 120 mW) in fibers of different length (5, 15, 35 m). The varying optical powers produced a varying phase shift. The output spectral width also changed with the fiber length at a given peak power.
In this work, plasma parameters such as (electron temperature (Te), electron density (ne), plasma frequency (fp) and Debye length (λD)) were studied using spectral analysis techniques. The spectrum of the plasma was recorded with different energy values, SnO2 and ZnO anesthetized at a different ratio (X = 0.2, 0.4 and 0.6) were recorded. Spectral study of this mixing in the air. The results showed electron density and electron temperature increase in zinc oxide: tin oxide alloy targets. It was located that The intensity of the lines increases in different laser peak powers when the laser peak power increases and then decreases when the force continues to increase.
Abstract: Aluminum alloys grade 6061-T6 are characterized by their excellent properties and processing characteristics which make them ideal for varieties of industrial applications under cyclic loading, aluminum alloys show less fatigue life than steel alloys of similar strength. In the current study, a nanosecond fiber laser of maximum pulse energy up to 9.9 mJ was used to apply laser shock peening process (LSP) on aluminum thin sheets to introduce residual stresses in order to enhance fatigue life under cyclic loading Box-Behnken design (BBD) based on the design of experiments (DOE) was employed in this study for experimental design data analysis, model building and optimization The effect of working parameters spot size (ω), scannin
... Show MoreAqueous root extract has been used to examine the green production of silver nanoparticles (AgNPs) by reducing the Ag+ ions in a silver nitrate solution. UV-Vis spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to analyze the produced AgNPs. The AgNPs that were created had a maximum absorbance at 416 nm, were spherical in form, polydispersed in nature, and were 685 nm in size.The AgNPs demonstrated antibacterial efficacy against Escherichia coli and Staphylococcus. The dengue vector Aedes aegypti's second instar larvae were very susceptible to the AgNPs' powerful larvicidal action.
Photobiomodulation (PBM) is a form of the use of visible red and Near-infrared (NIR) light at low power, where a laser light photon is absorbed at the electronic level, without heat production. PBM can be applied in wide range of treatment to help the wound, inflammation, edema, and pain reduction. However, there is a lack of scientific documentation regarding its actual effects. Objectives: This study assesses the impact of PBM on the release of M1-related cytokine in monocyte cells with particular emphasis on interleukin-1β (IL-1β) and Tumour Necrosis Factor α (TNF-α). Methods: Tamm-Horsfall Protein 1 (THP-1) macrophages M1 cells have been exposed to the light from the diode laser of 850nmat different doses (0, 0.6, 1.2 and 3.
... Show MoreThe effect of 410nm with 100 mW output power and one centimetre spot size (0.128 W/cm2 power density) Diode laser irradiation at different exposure times on the growth of Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus was evaluated. Seventy swap samples were collected from burn and infected wounds of 35 patients admitted to the burn-wound unit in Al-Yarmouk Teaching Hospital in Baghdad during the period from December 2014 to February 2015. These bacteria were isolated and identified depending on their growth on selective media, cultural characteristics, Gram stain morphology and biochemical tests and finally were confirmed by Vitek 2 compact system test .Susceptibility of bacterial isolates to 15antibiotics
... Show MoreThe doping process with materials related to carbon has become a newly emerged approach for achieving an improvement in different physical properties for the obtained doped films. Thin films of CuPc: C60 with doping ratio of (100:1) were spin-coated onto pre-cleaned glass substrates at room temperature. The prepared films were annealed at different temperatures of (373, 423 and 473) K. The structural studies, using a specific diffractometry of annealed and as deposited samples showed a polymorphism structure and dominated by CuPc with preferential orientation of the plane (100) of (2θ = 7) except at temperature of 423K which indicated a small peak around (2θ = 3
Spray pyrolysis technique was used to make Carbon60-Zinc oxide (C60-ZnO) thin films, and chemical, structural, antibacterial, and optical characterizations regarding such nanocomposite have been done prior to and following treatment. Fullerene peaks in C60-ZnO thin films are identical and appear at the same angles. Following the treatment of the plasma, the existence regarding fullerene peaks in the thin films investigated suggests that the crystallographic quality related to C60-ZnO thin films has enhanced. Following plasma treatment, field emission scanning electron microscopy (FESEM) images regarding a C60-ZnO thin film indicate that both zinc oxide and fullerene particles had shrunk in the size and have an even distribution. In addition
... Show MoreThe researchers have discovered weaknesses in the rotational phase of the 100-meter freestyle event, including a lack of proper movement direction and control of biomechanical variables necessary for swimmers to achieve high rotational accuracy, which leads to outperforming competitors. The objective of this study was to investigate the effect of using a laser device on improving the performance of the rotational phase among swimmers on the Iraqi national team. The experimental approach was conducted on a sample of 6 swimmers, representing 100% of the target population. The researchers concluded that the utilization of a proposed laser device in the rotational phase resulted in positive differences in biomechanical variables, contri
... Show More