In this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in
ECG is an important tool for the primary diagnosis of heart diseases, which shows the electrophysiology of the heart. In our method, a single maternal abdominal ECG signal is taken as an input signal and the maternal P-QRS-T complexes of original signal is averaged and repeated and taken as a reference signal. LMS and RLS adaptive filters algorithms are applied. The results showed that the fetal ECGs have been successfully detected. The accuracy of Daisy database was up to 84% of LMS and 88% of RLS while PhysioNet was up to 98% and 96% for LMS and RLS respectively.
DNA methylation is one of the main epigenetic mechanisms in cancer development and progression. Aberrant DNA methylation of CpG islands within promoter regions contributes to the dysregulation of various tumor suppressors and oncogenes; this leads to the appearance of malignant features, including rapid proliferation, metastasis, stemness, and drug resistance. The discovery of two important protein families, DNA methyltransferases (DNMTs) and Ten-eleven translocation (TET) dioxygenases, respectively, which are responsible for deregulated transcription of genes that play pivotal roles in tumorigenesis, led to further understanding of DNA methylation-related pathways. But how these enzymes can target specific genes in different malignancies;
... Show MoreError control schemes became a necessity in network-on-chip (NoC) to improve reliability as the on-chip interconnect errors increase with the continuous shrinking of geometry. Accordingly, many researchers are trying to present multi-bit error correction coding schemes that perform a high error correction capability with the simplest design possible to minimize area and power consumption. A recent work, Multi-bit Error Correcting Coding with Reduced Link Bandwidth (MECCRLB), showed a huge reduction in area and power consumption compared to a well-known scheme, namely, Hamming product code (HPC) with Type-II HARQ. Moreover, the authors showed that the proposed scheme can correct 11 random errors which is considered a high
... Show MoreBackground and Aim: The use of food dyes can cause certain diseases, such as anemia and indigestion, along with other disorders, tumors, and even cancer. Therefore, this study aimed to determine the chemical nature and toxicity of some commercial dyes locally used in processed foods compared with standard food dyes. Materials and Methods: Three types of standard and commercial food color additives (Sunset Yellow, Tartrazine, and Carmoisine) were extensively examined. The chemical structures and functional groups of the dyes were evaluated by Fourier-transform infrared (FTIR) spectroscopy. The melting temperatures of the dyes were also determined by chemical thermal analysis. The acute toxicity test to evaluate the standard and commercial
... Show MoreThe variation of compression index Cc and swelling index Cs with the degree of saturation S was studied on unsaturated and fully saturated soils for different degrees of saturation (100%, 91%, 85%, 75%, 60%), several mathematical equations were found to describe these relationships, these equations can be used to predict settlement during the consolidation process in unsaturated and fully saturated soils.
Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show MoreFace Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show MorePseudomonas aeruginosa is a common and major opportunistic human pathogen, its causes many and dangersinfectious diseases due to death in some timesex: cystic fibrosis , wounds inflammation , burns inflammation , urinary tract infection , other many infections otitis external , Endocarditis , nosocomial infection and also causes other blood infections (Bacteremia). thereforebecomes founding fast and exact identification of P. aeruginosafrom samples culture very important.However, identification of this species may be problematic due to the marked phenotypic variabilitydemonstrated by samples isolates and the presence of other closely related species. To facilitate species identification, we used 16S ribosomal DNA(rRNA) sequence data
... Show More