In this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.
The rise of edge-cloud continuum computing is a result of the growing significance of edge computing, which has become a complementary or substitute option for traditional cloud services. The convergence of networking and computers presents a notable challenge due to their distinct historical development. Task scheduling is a major challenge in the context of edge-cloud continuum computing. The selection of the execution location of tasks, is crucial in meeting the quality-of-service (QoS) requirements of applications. An efficient scheduling strategy for distributing workloads among virtual machines in the edge-cloud continuum data center is mandatory to ensure the fulfilment of QoS requirements for both customer and service provider. E
... Show MoreThe purpose of present work is to study the relationship of the deformed shape of the nucleus with the radioactivity of nuclei for (Uranium-238 and Thorium-232) series. To achieve our purposes we have been calculated the quadruple deformation parameter (β2) and the eccentricity (e) and compare the radioactive series with the change of the and (e) as indicator for the changing in the nucleus shape with the radioactivity. To obtain the value of quadruple deformation parameter (β2), the adopted value of quadruple transition probability B (E2; 0+ → 2+) was calculated from Global Best fit equation. While the eccentricity (e) was calculated from the values of the minor and major ellipsoid axis’s (a & b). From the results, it is obvi
... Show MoreIraqi siliceous rocks were chosen to be used as raw materials in this study which is concern with the linear shrinkage and their related parameters. They are porcelinite from Safra area (western desert) and Kaolin Duekla, their powders were mixed in certain percentage, to shape compacts and sintered. The study followed with thermal and chemical treatments, which are calcination and acid washing. The effects on final compact properties such as linear shrinkage were studied. Linear shrinkage was calculated for sintered compacts to study the effects of calcination processes, chemical washing, weight percentage, sintering processes, loading moment were studied on this property where the compacts for groups is insulating materials.
Linear
The synthesis, characterization and mesomorphic properties of two new series of triazine-core based liquid crystals have been investigated. The amino triazine derivatives were characterized by elemental analysis, Fourier transforms infrared (FTIR), 1HNMR and mass spectroscopy. The liquid crystalline properties of these compounds were examined by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). DSC and POM confirmed nematic (N) and columnar mesophase textures of the materials. The formation of mesomorphic properties was found to be dependent on the number of methylene unit in alkoxy side chains.
Catalytic reduction is considered an effective approach for the reduction of toxic organic pollutants from the environment, but finding an active catalyst is still a big challenge. Herein, Ag decorated CeO2 catalyst was synthesized through polyol reduction method and applied for catalytic reduction (conversion) of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The Ag decorated CeO2 catalyst displayed an outstanding reduction activity with 99% conversion of 4-NP in 5 min with a 0.61 min−1 reaction rate (k). A number of structural characterization techniques were executed to investigate the influence of Ag on CeO2 and its effect on the catalytic conversion of 4-NP. The outstanding catalytic performances of the Ag-CeO2 catalyst can be assigne
... Show MoreThe growing use of tele
This paper presents a new secret diffusion scheme called Round Key Permutation (RKP) based on the nonlinear, dynamic and pseudorandom permutation for encrypting images by block, since images are considered particular data because of their size and their information, which are two-dimensional nature and characterized by high redundancy and strong correlation. Firstly, the permutation table is calculated according to the master key and sub-keys. Secondly, scrambling pixels for each block to be encrypted will be done according the permutation table. Thereafter the AES encryption algorithm is used in the proposed cryptosystem by replacing the linear permutation of ShiftRows step with the nonlinear and secret pe
... Show MoreA space X is named a πp – normal if for each closed set F and each π – closed set F’ in X with F ∩ F’ = ∅, there are p – open sets U and V of X with U ∩ V = ∅ whereas F ⊆ U and F’ ⊆ V. Our work studies and discusses a new kind of normality in generalized topological spaces. We define ϑπp – normal, ϑ–mildly normal, & ϑ–almost normal, ϑp– normal, & ϑ–mildly p–normal, & ϑ–almost p-normal and ϑπ-normal space, and we discuss some of their properties.
Abstract
In this research we study the wavelet characteristics for the important time series known as Sunspot, on the aim of verifying the periodogram that other researchers had reached by the spectral transform, and noticing the variation in the period length on one side and the shifting on another.
A continuous wavelet analysis is done for this series and the periodogram in it is marked primarily. for more accuracy, the series is partitioned to its the approximate and the details components to five levels, filtering these components by using fixed threshold on one time and independent threshold on another, finding the noise series which represents the difference between
... Show More