In this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent root-mean-square difference (PRD %), energy retained (Er) and Peak Signal to Noise Ratio (PSNR). Based on testing results, a comparison between the three techniques is presented. CR in the three techniques is the same and has the largest value in the 2nd level of 3-D. The hybrid technique has the highest PSNR values in the 1st and 2nd level of 3-D and has the lowest values of (PRD %). so, the 3-D 2-level hybrid is the best technique for image compression.
Each phenomenon contains several variables. Studying these variables, we find mathematical formula to get the joint distribution and the copula that are a useful and good tool to find the amount of correlation, where the survival function was used to measure the relationship of age with the level of cretonne in the remaining blood of the person. The Spss program was also used to extract the influencing variables from a group of variables using factor analysis and then using the Clayton copula function that is used to find the shared binary distributions using multivariate distributions, where the bivariate distribution was calculated, and then the survival function value was calculated for a sample size (50) drawn from Yarmouk Ho
... Show MoreThe study aimed to monitor the concept of reputation in the previous literature, its relationship to mental image and identity, and to reveal recent trends in its measurement Techniques.
The study relied on a descriptive approach using library survey and comparative analysis, and the study reached following conclusions:
Despite the beginning of the first signs of reputation In the fifties of the last century, however, Defining and standardizing the concept with clear and specific dimensions began in the 1990s and the beginning of the third millennium. The concept of reputation refers to the stakeholders’ overall evaluation of organizations, which reflects their perceptions of
... Show MoreIn this work, we construct projectively distinct (k,3)-arcs in the projective plane PG(2,9) by applying a geometrical method. The cubic curves have been been constructed by using the general equation of the cubic. We found that there are complete (13,3)-arcs, complete (15,3)-arcs and we found that the only (16,3)-arcs lead to maximum completeness
Abstract
A two electrode immersion electrostatic lens used in the design
of an electron gun, with small aberration, has been designed using
the finite element method (FEM). By choosing the appropriate
geometrical shape of there electrodes the potential V(r,z) and the
axial potential distribution have been computed using the FEM to
solve Laplace's equation.
The trajectory of the electron beam and the optical properties of
this lens combination of electrodes have been computed under
different magnification conditions (Zero and infinite magnification
conditions) from studying the properties of the designed electron
gun can be supplied with Abeam current of 5.7*10-6 A , electron
gun with half acceptance
Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
