In this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent root-mean-square difference (PRD %), energy retained (Er) and Peak Signal to Noise Ratio (PSNR). Based on testing results, a comparison between the three techniques is presented. CR in the three techniques is the same and has the largest value in the 2nd level of 3-D. The hybrid technique has the highest PSNR values in the 1st and 2nd level of 3-D and has the lowest values of (PRD %). so, the 3-D 2-level hybrid is the best technique for image compression.
During the two last decades ago, audio compression becomes the topic of many types of research due to the importance of this field which reflecting on the storage capacity and the transmission requirement. The rapid development of the computer industry increases the demand for audio data with high quality and accordingly, there is great importance for the development of audio compression technologies, lossy and lossless are the two categories of compression. This paper aims to review the techniques of the lossy audio compression methods, summarize the importance and the uses of each method.
The topological parameters of the metal-metal and metal-ligand bonding interactions in a trinuclear tetrahydrido cluster [(Cp*Co) (CpRu)2 (μ3-H) (μ-H)3]1 (Cp* = η5 -C5Me4Et), (Cp = η5 -C5Me5), was explored by using the Quantum Theory of Atoms-in-Molecules (QTAIM). The properties of bond critical points such as the bond delocalization indices δ (A, B), the electron density ρ(r), the local kinetic energy density G(r), the Laplacian of the electron density ∇2ρ(r), the local energy density H(r), the local potential energy density V(r) and ellipticity ε(r) are compared with data from earlier organometallic system studies. A comparison of the topological processes of different atom-atom interactions has become possible than
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreAim: To evaluate the effect of two bonding systems and two curing systems on sealing ability of class V composite restorative materials. Materials and methods: This study was performed in vitro on 40 caries free upper first premolar teeth. The Standardized class V cavity preparation on buccal and lin- gual surfaces of each tooth was done. Then the teeth were randomly divided into two major groups each of twenty. 40 cavities were performed on these teeth and the first group7th generation bonding agent (i Bond) were applied according to the manufacturer instructions and single increment of univer- sal composite (XRV Herculite) from kerr were applied and twenty of the cavities were cured with con- ventional light cure device (astralis-5) and t
... Show MoreThis paper tackles with principal component analysis method (PCA ) to dimensionality reduction in the case of linear combinations to digital image processing and analysis. The PCA is statistical technique that shrinkages a multivariate data set consisting of inter-correlated variables into a data set consisting of variables that are uncorrelated linear combination, while ensuring the least possible loss of useful information. This method was applied to a group of satellite images of a certain area in the province of Basra, which represents the mouth of the Tigris and Euphrates rivers in the Shatt al-Arab in the province of Basra.
... Show MoreThe demand for electronic -passport photo ( frontal facial) images has grown rapidly. It now extends to Electronic Government (E-Gov) applications such as social benefits driver's license, e-passport, and e-visa . With the COVID 19 (coronavirus disease ), facial (formal) images are becoming more widely used and spreading quickly, and are being used to verify an individual's identity, but unfortunately that comes with insignificant details of constant background which leads to huge byte consumption that affects storage space and transmission, where the optimal solution that aims to curtail data size using compression techniques that based on exploiting image redundancy(s) efficiently.
COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in
Landforms on the earth surface are so expensive to map or monitor. Remote Sensing observations from space platforms provide a synoptic view of terrain on images. Satellite multispectral data have an advantage in that the image data in various bands can be subjected to digital enhancement techniques for highlighting contrasts in objects for improving image interpretability. Geomorphological mapping involves the partitioning of the terrain into conceptual spatial entities based upon criteria. This paper illustrates how geomorphometry and mapping approaches can be used to produce geomorphological information related to the land surface, landforms and geomorphic systems. Remote Sensing application at Razzaza–Habbaria area southwest of Razz
... Show MoreThis study aims to demonstrate the role of artificial intelligence and metaverse techniques, mainly logistical Regression, in reducing earnings management in Iraqi private banks. Synthetic intelligence approaches have shown the capability to detect irregularities in financial statements and mitigate the practice of earnings management. In contrast, many privately owned banks in Iraq historically relied on manual processes involving pen and paper for recording and posting financial information in their accounting records. However, the banking sector in Iraq has undergone technological advancements, leading to the Automation of most banking operations. Conventional audit techniques have become outdated due to factors such as the accuracy of d
... Show MoreHigh-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,
... Show More