The current study suggested a thermal treatment as a necessary proactive step in improving the adsorption capacity of bio-waste for contaminants removal in wastewater. This approach was based on the experimental and histological investigation of biowaste pods shell. This investigation showed that these shells compose of parenchyma cells that store secondary metabolites compounds produced from cells were exhibited in present study. The results also reported that these compounds are extracted directly from the cells as soon as they are exposed to an aqueous solution, hampering their use as an adsorbent material. The increase in the weight of bio-waste adsorbent at unit liquid volume increases the production of secondary metabolites compounds under normal conditions. While thermal conditions accelerate the exit of these compounds from their storage places. After suggested thermal processing, the bio-waste was examined for azo dye removal under different operational conditions (adsorbent weight (1,0.1 g), contact time (24 and 48 hr), and temperature (30, 40, 50,and 60°C). In general, the experimental data showed a good improvement in adsorption potential. The results presented clearly that the increase in temperature has a positive effect on the performance of pollutant removal. The maximum adsorption capacity was 0.035833 mol/g at a temperature of 40°C, and 0.036417 mol/g at a temperature of 50°C. This behaviour may be counterproductive with high temperatures as a result of the release of more secondary metabolites compounds. For other operating conditions, increasing the concentration of the pollutant also improves the efficiency of the process, while this efficiency decreases with the increasing weight of the adsorbent material. For example, the removal capacity was (0.000275, 0.00675 mol/g) with 1 and 0.1 g of the adsorbent weight, respectively. Finally, the present study concluded that the adoption of thermal pre-treatment technology for bio-mass waste is a necessary step in improving the adsorption processes.
In this study, aromatic polyamide reverse osmosis membranes were used to remove zinc ions from electroplating wastewater. Influence of different operating conditions such as time, zinc concentration and pressure on reverse osmosis process efficiency was studied. The experimental results showed, concentration of zinc in permeate increase with increases of time from 0 to 70 min, and flux of water through membrane decline with time. While, the concentrations of zinc in permeate increase with the increase in feed zinc concentration (10–300 mg/l), flux decrease with the increment of feed concentration. The raise of pressure from 1 to 4 bar, the zinc concentration decreases and the flux increase. The highest recovery percentage was fou
... Show MoreThe physical, the thermal and the mechanical properties of Nano-composites, that consisted of Polyprime EP epoxy that reinforced by multi-walled carbon nanotubes (MWCNTs), have been studied. Various loading ratios, 0.1, 0.5, and 1 wt. %of MWCNT shave been infused into epoxy by a magnetic stirrer and then the hardener mixed with the mthat supplied with the epoxy. All sample shave been cutting using CNC machine. Tensile test, three-point bending, hardness tests, lee's disk, differential scanning calorimetry, water absorption and dielectric and electrical conductivity test were utilized on unfilled, MWCNT-filled epoxy to identify the loading effect on the properties of materials. Scanning electron microscopy (SEM) was used to determine the
... Show MoreThis paper presents a combination of enhancement techniques for fingerprint images affected by different type of noise. These techniques were applied to improve image quality and come up with an acceptable image contrast. The proposed method included five different enhancement techniques: Normalization, Histogram Equalization, Binarization, Skeletonization and Fusion. The Normalization process standardized the pixel intensity which facilitated the processing of subsequent image enhancement stages. Subsequently, the Histogram Equalization technique increased the contrast of the images. Furthermore, the Binarization and Skeletonization techniques were implemented to differentiate between the ridge and valley structures and to obtain one
... Show MorePrepared zeolite type A was used for theremoval of cesium ions from aqueous solution. The experimental data were analyzed by Langmuir, Freundlich isotherms. Various parameters, such as contact time, zeolite weight, pH, and initial concentration, were studied. The results indicated that the highest removal efficiency was95.53% at (2h time, 0.04 g weight, and pH=6.8). The results also showed that the Freundlic model fits well with the experimental results and is better than the Langmuir model.
Composite steel-concrete sections have a broad benefit through increasing structural strength as well as minimizing the self-loads. All past researches were concerned with pre-installed shear connectors (PRSC) in the manufacturing of composite sections. A new fabrication technique for steel-concrete-steel composite sections were presented in the current study by the post-installation shear connectors (POSC) passed-through an embedded polymerizing vinyl chloride (PVC) pipes. The performance of normal strength concrete prisms with a specified strength of 32 MPa connected to square steel tubes (SST) was investigated. Six specimens were fabricated in both methodologies, PRSC and POSC were experimentally tested by Push-out test. The spac
... Show MoreThe atmospheric air cold plasma has been used to manufacture gold nanomaterials for treating parasitic leishmaniasis. This study experimentally assessed the treatment of Leishmania parasites (L. donovani and L. tropica) by gold nanoparticles. Specifically, atmospheric pressure nonthermal plasma was generated using different diameters (1.0, 2.8, 3.8 and 4.3 mm) of high voltage electrode. Aqueous gold tetrachloride salts (HAuCl4·4H2O) were used as precursor to produce gold nanoparticles. UV-vis spectroscopy and x-ray diffraction were conducted for characterization of the nanoparticles. The optimum condition (a diameter of 1 mm) was chosen to prepare gold nanoparticles, where the grain size was found to be 17 nm. Accordingly, the nanoparticle
... Show MoreSoft clays are generally characterized by low shear strength, low permeability and high compressibility. An effective method to accelerate consolidation of such soils is to use vertical drains along with vacuum preloading to encourage radial flow of water. In this research numerical modeling of prefabricated vertical drains with vacuum pressure was done to investigate the effect of using vertical drains together with vacuum pressure on the degree of saturation of fully and saturated-unsaturated soft soils. Laboratory experiments were conducted by using a specially-designed large consolidometer cell where a central drain was installed and vacuum pressure was applied. All tests were conducted
... Show MoreThe kinetics of removing cadmium from aqueous solutions was studied using a bio-electrochemical reactor with a packed bed rotating cylindrical cathode. The effect of applied voltage, initial concentration of cadmium, cathode rotation speed, and pH on the reaction rate constant (k) was studied. The results showed that the cathodic deposition occurred under the control of mass transfer for all applied voltage values used in this research. Accordingly, the relationship between logarithmic concentration gradient with time can be represented by a first-order kinetic rate equation. It was found that the rate constant (k) depends on the applied voltage, the initial cadmium concentration, the pH and the rotational speed of cathode. It
... Show More
