<p>Vehicular ad-hoc networks (VANET) suffer from dynamic network environment and topological instability that caused by high mobility feature and varying vehicles density. Emerging 5G mobile technologies offer new opportunities to design improved VANET architecture for future intelligent transportation system. However, current software defined networking (SDN) based handover schemes face poor handover performance in VANET environment with notable issues in connection establishment and ongoing communication sessions. These poor connectivity and inflexibility challenges appear at high vehicles speed and high data rate services. Therefore, this paper proposes a flexible handover solution for VANET networks by integrating SDN and fog computing (FC) technologies. The SDN provides global knowledge, programmability and intelligence functions for simplified and efficient network operation and management. FC, on the other hand, alleviates the core network pressure by providing real time computation and transmission functionalities at edge network to maintain the demands of delay sensitive applications. The proposed solution overcomes frequent handover challenges and reduces the processing overhead at core network. Moreover, the simulation evaluation shows significant handover performance improvement of the proposed solution compared to current SDN based schemes, especially in terms of handover latency and packet loss ratio under various simulation environments.</p>
ABSTRACT
Naproxen(NPX) imprinted liquid electrodes of polymers are built using polymerization precipitation. The molecularly imprinted (MIP) and non imprinted (NIP) polymers were synthesized using NPX as a template. In the polymerization precipitation involved, styrene(STY) was used as monomer, N,N-methylenediacrylamide (N,N-MDAM) as a cross-linker and benzoyl peroxide (BPO) as an initiator. The molecularly imprinted membranes and the non-imprinted membranes were prepared using acetophenone(AOPH) and di octylphathalate(DOP)as plasticizers in PVC matrix. The slopes and detection limits of the liquid electrodes ranged from)-18.1,-17.72 (mV/decade and )4.0 x 10-
... Show MoreThis article proposes a new strategy based on a hybrid method that combines the gravitational search algorithm (GSA) with the bat algorithm (BAT) to solve a single-objective optimization problem. It first runs GSA, followed by BAT as the second step. The proposed approach relies on a parameter between 0 and 1 to address the problem of falling into local research because the lack of a local search mechanism increases intensity search, whereas diversity remains high and easily falls into the local optimum. The improvement is equivalent to the speed of the original BAT. Access speed is increased for the best solution. All solutions in the population are updated before the end of the operation of the proposed algorithm. The diversification f
... Show MoreAbstract. Full-waveform airborne laser scanning data has shown its potential to enhance available segmentation and classification approaches through the additional information it can provide. However, this additional information is unable to directly provide a valid physical representation of surface features due to many variables affecting the backscattered energy during travel between the sensor and the target. Effectively, this delivers a mis-match between signals from overlapping flightlines. Therefore direct use of this information is not recommended without the adoption of a comprehensive radiometric calibration strategy that accounts for all these effects. This paper presents a practical and reliable radiometric calibration r
... Show MoreThe electrical performance of bottom-gate/top source-drain contact for p-channel organic field-effect transistors (OFETs) using poly(3-hexylthiophene) (P3HT) as an active semiconductor layer with two different gate dielectric materials, Polyvinylpyrrolidone (PVP) and Hafnium oxide (HfO2), is investigated in this work. The output and transfer characteristics were studied for HfO2, PVP and HfO2/PVP as organic gate insulator layer. Both characteristics show a high drain current at the gate dielectric HfO2/PVP equal to -0.0031A and -0.0015A for output and transfer characteristics respectively, this can be attributed to the increasing of the dielectric capacitance. Transcondactance characteristics also studied for the three organic mater
... Show MoreAn experimental study is conducted to investigate the effect of heat flux distribution on the boiling safety factor of its cooling channel. The water is allowed to flow in a horizontal circular pipe whose outlet surface is subjected to different heat flux profiles. Four types of heat flux distribution profiles are used during experiments: (constant distribution profile, type a, triangle distribution profile with its maximum in channel center, type b, triangle distribution profile with its maximum in the channel inlet, type c, and triangle distribution profile with its maximum in the channel outlet, type d). The study is conducted using heat sources of (1000 and 2665W), water flow rates of (5, 7 and 9 lit/min). The water
... Show MorePhotonic crystal fiber interferometers are widely used for sensing applications. In this work, solid core-Photonic crystal fiber based on Mach-Zehnder modal interferometer for sensing refractive index was presented. The general structure of sensor applied by splicing short lengths of PCF in both sides with conventional single mode fiber (SMF-28). To apply modal interferometer theory; collapsing technique based on fusion splicing used to excite higher order modes (LP01 and LP11). Laser diode (1550 nm) has been used as a pump light source. Where a high sensitive optical spectrum analyzer (OSA) was used to monitor and record the transmitted. The experimental work shows that the interference spectrum of Photonic crystal fiber interferometer
... Show More