Eight different Dichloro(bis{2-[1-(4-R-phenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})iron(II) compounds, 2–9, have been synthesised and characterised, where group R=CH3 (L2), OCH3 (L3), COOH (L4), F (L5), Cl (L6), CN (L7), H (L8) and CF3 (L9). The single crystal X-ray structure was determined for the L3 which was complemented with Density Functional Theory calculations for all complexes. The structure exhibits a distorted octahedral geometry, with the two triazole ligands coordinated to the iron centre positioned in the equatorial plane and the two chloro atoms in the axial positions. The values of the FeII/III redox couple, observed at ca. −0.3 V versus Fc/ Fc+ for complexes 2–9, varied over a very small potential range of 0.05 V. The observation that the different R substituents have virtually no effect on the values of the FeII/III redox couple for all eight complexes 2–9, is explained by the character of the highest molecular orbitals of complexes 2–9, which do not show any communication of electron density between the various ligands and the metal Fe. However, the HOMOs of the free ligands L2 – L9, display extended π-character over the entire ligand, explaining the sensitivity of the 1H NMR C–H-triazole peak, which is dependent on the electron donating/withdrawing power of the R substituent attached to the 2-[1-(4-R-phenyl)-1H-1,2,3-triazol-4-yl]pyridine ligands.
Density Functional Theory (DFT) with B3LYP hybrid exchange-correlation functional and 3-21G basis set and semi-empirical methods (PM3) were used to calculate the energies (total energy, binding energy (Eb), molecular orbital energy (EHOMO-ELUMO), heat of formation (?Hf)) and vibrational spectra for some Tellurium (IV) compounds containing cycloctadienyl group which can use as ligands with some transition metals or essential metals of periodic table at optimized geometrical structures.
Synthesis and study liquid crystalline properties of new compounds with terminal groups of amides ([III]a-c,[IV]a-c and [VI]n), alkoxy series[V]n or ester with azo linkage ([IX]a-c and[X]a-c) containing thaizole ring. These series were synthesized by many steps starting from 4- hydroxyacetophenone or 4-aminoacetophenone. The synthesized compounds were characterized using melting points, FTIR, C.H.N.S analysis and for some of them 1H NMR spectroscopy. The liquid crystalline properties were studied by hot stage polarizing microscopy and differential scanning calorimetry DSC. All compounds of series [III]a-c,[IV]a-c and compounds [V]n showed enantiotropic liquid crystal. While the series [VI]n showed nematic mesomorphism except [VI]8 did not s
... Show More
Diazotization reaction between quinolin-2-ol and (2-chloro-1-(4-(N-(5-methylisoxazol-3-yl)sulfamoyl)phenyl)-2l4-diazyn-1-ium was carried out resulting in ligand-HL, this in turn reacted with the next metal ions (Ni2+, Pt4+, Pd2+, and Mn2+) forming stable complexes with unique geometries such as (tetrahedral for both Ni2+ and Mn2+, octahedral for Pt4+ and square planer for Pd2+ ). The creation of such complexes was detected by employing spectroscopic means involving ultraviolet-visible which proved the obtained geometries, fourier transfer proved the formation of azo group and the coordination with metal ion through it. Pyrolysis (TGA &
... Show MoreTwelve compounds containing a sulphur- or oxygen-based heterocyclic core, 1,3- oxazole or 1,3-thiazole ring with hydroxy, methoxy and methyl terminal substituent, were synthesized and characterized. The molecular structures of these compounds were performed by elemental analysis and different spectroscopic tequniques. The liquid crystalline behaviors were studied by using hot-stage optical polarizing microscopy and differential scanning calorimetry. All compounds of 1,4- disubstituted benzene core with oxazole ring display liquid crystalline smectic A (SmA) mesophase. The compounds of 1,3- and 1,4-disubstituted benzene core with thiazole ring exhibit exclusively enantiotropic nematic liquid crystal phases.
The degradation and mineralization of 4-chlorophenol (4-CP) by advanced oxidation processes (AOPs) was investigated in this work, using both of UV/H2O2 and photo-Fenton UV/H2O2/Fe+3 systems.The reaction was influenced by the input concentration of H2O2, the amount of the iron catalyst, the type of iron salt, the pH and the concentration of 4-CP. A colored solution of benzoquinon can be observed through the first 5 minutes of irradiation time for UV/H2O2 system when low concentration (0.01mol/L) of H2O2 was used. The colored solution of benzoquinon could also be observed through the first 5 minutes for the UV/H2O2/Fe+3 system at high
concentration (100ppm) of 4-CP. The results have shown that adding Fe+3 to the UV/H2O2 system enhanced
The 4-(?-bromo acetyl)-4?-toluene sulfonanilide (2) was used as key intermediate to synthesize new heterocyclic compounds. This bromo compound was synthesized via sulfonation of amino group of p-amino acetophenone using Hinsburg method with 4-toluene sulfonyl chloride to form 4-acetyl-4?-toluene sulfonanilide (1) which is used as a starting material in this work. This compound was brominated to yield compound (2) which is used as a precursor to synthesize new five and seven membered heterocyclic compounds such as substituted 1,3-oxazoles (3,4), 1,3-thiazole derivatives (5-7), thiourea compounds (8a,b), 1,3-Thiazoline-2-thione compounds (9a-f) and 1,2,5-triazepine compounds (11a-d). The synthesized compounds were identified depending u
... Show More